{"title":"使用商用计算流体动力学软件验证镍基水洗层催化剂层中蒸汽甲烷转化的有效因子相关性","authors":"Yun Seok Oh, Hyun-Joo Oh, Jin Hyun Nam","doi":"10.1007/s11814-024-00186-2","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, the effectiveness factor correlations proposed for steam methane reforming (SMR) in Ni-based washcoat catalyst layers were numerically validated using the commercial computational fluid dynamics (CFD) software, ANSYS Fluent. The SMR process in an exemplary microchannel reformer was simulated, once by fully considering the reaction and diffusion process within the washcoat catalyst layer and again by simplifying the process calculation using the effectiveness factor correlations. It was shown that the proposed effectiveness factor correlations could successfully capture the SMR characteristics in the washcoat catalyst layer, with a discrepancy of approximately 0.1% point in the overall methane conversion ratio in the validation test, while reducing the calculation time by a factor of 1/5 for the same number of iterations. All these results clearly demonstrated that accurate and cost-effective CFD simulation of the steam reformer operation is possible using the proposed effectiveness factor correlations. Finally, this paper also addressed a possible numerical anomaly in the Fluent calculation identified during the present simulation.</p></div>","PeriodicalId":684,"journal":{"name":"Korean Journal of Chemical Engineering","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Validation of Effectiveness Factor Correlations for Steam Methane Reforming in Ni-Based Washcoat Catalyst Layers Using Commercial Computational Fluid Dynamics Software\",\"authors\":\"Yun Seok Oh, Hyun-Joo Oh, Jin Hyun Nam\",\"doi\":\"10.1007/s11814-024-00186-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, the effectiveness factor correlations proposed for steam methane reforming (SMR) in Ni-based washcoat catalyst layers were numerically validated using the commercial computational fluid dynamics (CFD) software, ANSYS Fluent. The SMR process in an exemplary microchannel reformer was simulated, once by fully considering the reaction and diffusion process within the washcoat catalyst layer and again by simplifying the process calculation using the effectiveness factor correlations. It was shown that the proposed effectiveness factor correlations could successfully capture the SMR characteristics in the washcoat catalyst layer, with a discrepancy of approximately 0.1% point in the overall methane conversion ratio in the validation test, while reducing the calculation time by a factor of 1/5 for the same number of iterations. All these results clearly demonstrated that accurate and cost-effective CFD simulation of the steam reformer operation is possible using the proposed effectiveness factor correlations. Finally, this paper also addressed a possible numerical anomaly in the Fluent calculation identified during the present simulation.</p></div>\",\"PeriodicalId\":684,\"journal\":{\"name\":\"Korean Journal of Chemical Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Korean Journal of Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11814-024-00186-2\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Korean Journal of Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11814-024-00186-2","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Validation of Effectiveness Factor Correlations for Steam Methane Reforming in Ni-Based Washcoat Catalyst Layers Using Commercial Computational Fluid Dynamics Software
In this study, the effectiveness factor correlations proposed for steam methane reforming (SMR) in Ni-based washcoat catalyst layers were numerically validated using the commercial computational fluid dynamics (CFD) software, ANSYS Fluent. The SMR process in an exemplary microchannel reformer was simulated, once by fully considering the reaction and diffusion process within the washcoat catalyst layer and again by simplifying the process calculation using the effectiveness factor correlations. It was shown that the proposed effectiveness factor correlations could successfully capture the SMR characteristics in the washcoat catalyst layer, with a discrepancy of approximately 0.1% point in the overall methane conversion ratio in the validation test, while reducing the calculation time by a factor of 1/5 for the same number of iterations. All these results clearly demonstrated that accurate and cost-effective CFD simulation of the steam reformer operation is possible using the proposed effectiveness factor correlations. Finally, this paper also addressed a possible numerical anomaly in the Fluent calculation identified during the present simulation.
期刊介绍:
The Korean Journal of Chemical Engineering provides a global forum for the dissemination of research in chemical engineering. The Journal publishes significant research results obtained in the Asia-Pacific region, and simultaneously introduces recent technical progress made in other areas of the world to this region. Submitted research papers must be of potential industrial significance and specifically concerned with chemical engineering. The editors will give preference to papers having a clearly stated practical scope and applicability in the areas of chemical engineering, and to those where new theoretical concepts are supported by new experimental details. The Journal also regularly publishes featured reviews on emerging and industrially important subjects of chemical engineering as well as selected papers presented at international conferences on the subjects.