Riviello-Flores María de la Luz, Castillo-Martínez Carlos Román, Cadena-Iñiguez Jorge, Ruiz-Posadas Lucero del Mar, Soto-Hernández Ramón Marcos, Arévalo-Galarza Ma. de Lourdes, Castillo-Juárez Israel
{"title":"用于植物保护和次生代谢物产品的 Sechium compositum (Donn. Sm.) C. Jeffrey 的试管嫩枝再生和胼胝发生","authors":"Riviello-Flores María de la Luz, Castillo-Martínez Carlos Román, Cadena-Iñiguez Jorge, Ruiz-Posadas Lucero del Mar, Soto-Hernández Ramón Marcos, Arévalo-Galarza Ma. de Lourdes, Castillo-Juárez Israel","doi":"10.3390/horticulturae10060537","DOIUrl":null,"url":null,"abstract":"Sechium compositum (Cucurbitaceae) is a wild species that is distributed in the Soconusco region, Chiapas, Mexico, and the border with Guatemala. This species has an intangible biochemical value resulting from the pharmacological relevance of its secondary metabolites. However, as a consequence of the lack of knowledge about its importance, it is being displaced from its habitat at an accelerated rate, incurring the risk of genetic loss. Therefore, an in vitro culture protocol with two experimental phases was evaluated to propagate, conserve, and regenerate this species. The first phases considered the shoot propagation, adding seven concentrations (0.1, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2 mg mL−1) of 6-benzylaminopurine (BA) and thidiazuron (TDZ) and evaluating the number of buds and shoots and the shoot height. The best multiplication response was recorded with 0.1, 0.2, 0.4, and 1.0 mg L−1 of BA and 0.1 mg L−1 of TDZ, as well as the MS base culture medium. The validation of the results of the first phase (0.1 mg L−1 of BA) was compared with the MS in an independent experiment against the control (n = 50 repetitions), obtaining a height of 52 mm, 1.36 shoots, and 9.22 buds, suggesting that this concentration is adequate for the purpose, surpassing the MS control (MS culture medium alone). Of the total volume of roots obtained with packed bud structure in the previous experimental sample, it was reduced to 14% (n = 50). The second phase consisted of inducing callus formation from stem and leaf explants through the addition of 0.5, 1.0, and 2.0 mg L−1 of TDZ and 2,4-Dichlorophenoxyacetic acid (2,4-D) to the medium. Callus induction in S. compositum was better when using the stem in a medium with 2.0 mg L−1 of 2,4-D with a value of 97.8% around the explant. The addition of 500 mg L−1 of polyvinylpyrrolidone (PVP) is also suggested to reduce oxidation. This protocol represents a significant advance in the conservation, multiplication, and callus formation of S. compositum and contributes to its rescue and revaluation in the face of the danger of extinction.","PeriodicalId":13034,"journal":{"name":"Horticulturae","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In Vitro Shoot Regeneration and Callogenesis of Sechium compositum (Donn. Sm.) C. Jeffrey for Plant Conservation and Secondary Metabolites Product\",\"authors\":\"Riviello-Flores María de la Luz, Castillo-Martínez Carlos Román, Cadena-Iñiguez Jorge, Ruiz-Posadas Lucero del Mar, Soto-Hernández Ramón Marcos, Arévalo-Galarza Ma. de Lourdes, Castillo-Juárez Israel\",\"doi\":\"10.3390/horticulturae10060537\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sechium compositum (Cucurbitaceae) is a wild species that is distributed in the Soconusco region, Chiapas, Mexico, and the border with Guatemala. This species has an intangible biochemical value resulting from the pharmacological relevance of its secondary metabolites. However, as a consequence of the lack of knowledge about its importance, it is being displaced from its habitat at an accelerated rate, incurring the risk of genetic loss. Therefore, an in vitro culture protocol with two experimental phases was evaluated to propagate, conserve, and regenerate this species. The first phases considered the shoot propagation, adding seven concentrations (0.1, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2 mg mL−1) of 6-benzylaminopurine (BA) and thidiazuron (TDZ) and evaluating the number of buds and shoots and the shoot height. The best multiplication response was recorded with 0.1, 0.2, 0.4, and 1.0 mg L−1 of BA and 0.1 mg L−1 of TDZ, as well as the MS base culture medium. The validation of the results of the first phase (0.1 mg L−1 of BA) was compared with the MS in an independent experiment against the control (n = 50 repetitions), obtaining a height of 52 mm, 1.36 shoots, and 9.22 buds, suggesting that this concentration is adequate for the purpose, surpassing the MS control (MS culture medium alone). Of the total volume of roots obtained with packed bud structure in the previous experimental sample, it was reduced to 14% (n = 50). The second phase consisted of inducing callus formation from stem and leaf explants through the addition of 0.5, 1.0, and 2.0 mg L−1 of TDZ and 2,4-Dichlorophenoxyacetic acid (2,4-D) to the medium. Callus induction in S. compositum was better when using the stem in a medium with 2.0 mg L−1 of 2,4-D with a value of 97.8% around the explant. The addition of 500 mg L−1 of polyvinylpyrrolidone (PVP) is also suggested to reduce oxidation. This protocol represents a significant advance in the conservation, multiplication, and callus formation of S. compositum and contributes to its rescue and revaluation in the face of the danger of extinction.\",\"PeriodicalId\":13034,\"journal\":{\"name\":\"Horticulturae\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Horticulturae\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.3390/horticulturae10060537\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"HORTICULTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Horticulturae","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/horticulturae10060537","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HORTICULTURE","Score":null,"Total":0}
引用次数: 0
摘要
Sechium compositum(葫芦科)是一种野生物种,分布在墨西哥恰帕斯州的索科努斯科地区和危地马拉边境。该物种的次生代谢物具有药理相关性,因而具有无形的生化价值。然而,由于缺乏对其重要性的了解,该物种正加速从其栖息地消失,并面临基因丢失的风险。因此,我们评估了一种分两个实验阶段的体外培养方案,以繁殖、保护和再生该物种。第一阶段考虑的是芽繁殖,添加七种浓度(0.1、0.2、0.4、0.6、0.8、1.0、1.2 毫克毫升/升-1)的 6-苄基氨基嘌呤(BA)和噻虫嗪(TDZ),并评估芽和芽的数量以及芽的高度。在使用 0.1、0.2、0.4 和 1.0 mg L-1 的 BA 和 0.1 mg L-1 的 TDZ 以及 MS 基础培养基时,繁殖反应最佳。对第一阶段(0.1 mg L-1 BA)的结果进行了验证,并在独立实验中与 MS 对照(n = 50 次重复)进行了比较,获得了 52 mm 的高度、1.36 个芽和 9.22 个芽,表明该浓度足以达到目的,超过了 MS 对照(仅 MS 培养基)。在前一个实验样本中,获得的具有密集芽结构的根总量减少到 14%(n = 50)。第二阶段是在培养基中添加 0.5、1.0 和 2.0 mg L-1 的 TDZ 和 2,4-二氯苯氧乙酸(2,4-D),诱导茎和叶外植体形成胼胝体。在含有 2.0 mg L-1 2,4-D的培养基中使用茎诱导 S. compositum 的胼胝体效果更好,外植体周围的胼胝体诱导率为 97.8%。此外,还建议添加 500 mg L-1 的聚乙烯吡咯烷酮(PVP)以减少氧化。该方案在保护、繁殖和形成结茧方面取得了重大进展,有助于拯救面临灭绝危险的绣线菊并重新评估其价值。
In Vitro Shoot Regeneration and Callogenesis of Sechium compositum (Donn. Sm.) C. Jeffrey for Plant Conservation and Secondary Metabolites Product
Sechium compositum (Cucurbitaceae) is a wild species that is distributed in the Soconusco region, Chiapas, Mexico, and the border with Guatemala. This species has an intangible biochemical value resulting from the pharmacological relevance of its secondary metabolites. However, as a consequence of the lack of knowledge about its importance, it is being displaced from its habitat at an accelerated rate, incurring the risk of genetic loss. Therefore, an in vitro culture protocol with two experimental phases was evaluated to propagate, conserve, and regenerate this species. The first phases considered the shoot propagation, adding seven concentrations (0.1, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2 mg mL−1) of 6-benzylaminopurine (BA) and thidiazuron (TDZ) and evaluating the number of buds and shoots and the shoot height. The best multiplication response was recorded with 0.1, 0.2, 0.4, and 1.0 mg L−1 of BA and 0.1 mg L−1 of TDZ, as well as the MS base culture medium. The validation of the results of the first phase (0.1 mg L−1 of BA) was compared with the MS in an independent experiment against the control (n = 50 repetitions), obtaining a height of 52 mm, 1.36 shoots, and 9.22 buds, suggesting that this concentration is adequate for the purpose, surpassing the MS control (MS culture medium alone). Of the total volume of roots obtained with packed bud structure in the previous experimental sample, it was reduced to 14% (n = 50). The second phase consisted of inducing callus formation from stem and leaf explants through the addition of 0.5, 1.0, and 2.0 mg L−1 of TDZ and 2,4-Dichlorophenoxyacetic acid (2,4-D) to the medium. Callus induction in S. compositum was better when using the stem in a medium with 2.0 mg L−1 of 2,4-D with a value of 97.8% around the explant. The addition of 500 mg L−1 of polyvinylpyrrolidone (PVP) is also suggested to reduce oxidation. This protocol represents a significant advance in the conservation, multiplication, and callus formation of S. compositum and contributes to its rescue and revaluation in the face of the danger of extinction.