通过优化压缩机和动力涡轮机联合调节的可变几何控制策略,提高联合循环燃气轮机的部分负荷性能

Qi-an Xie, Hu Wu, Li-ping Deng
{"title":"通过优化压缩机和动力涡轮机联合调节的可变几何控制策略,提高联合循环燃气轮机的部分负荷性能","authors":"Qi-an Xie, Hu Wu, Li-ping Deng","doi":"10.1177/09576509241254578","DOIUrl":null,"url":null,"abstract":"The variable geometry methods currently used in combined-cycle gas turbines are compressor variable inlet guide vanes (VIGV) or power turbine variable area nozzles (VAN). On this basis, this study presents the optimal variable geometry control strategy for compressor and power turbine combined adjustment ([Formula: see text]) using the Differential Evolutionary Algorithm with the LM2500+ gas turbine. The aim is to further improve the part-load performance of the combined-cycle gas turbine. Firstly, a part-load performance prediction model for variable geometry gas turbines is established based on the component method. Subsequently, a variable geometry gas turbine part-load performance optimization model is developed by combining the Differential Evolution Algorithm. Finally, the optimum combination of stagger angles for the compressor inlet vane and power turbine nozzle is calculated at each part-load condition. Compared to the VIGV and VAN control strategies, the [Formula: see text] control strategy proposed in this paper shows a higher stability margin and better economy. The [Formula: see text] control strategy maintains a constant exhaust temperature within a part load range from 20% to 100% with the stability margin exceeding 14%. In comparison with the VAN control strategy, the fuel flow rate decreases by 1.152% at 45% relative load power and by 3.435% at 20.0% relative load power with the [Formula: see text] control strategy.","PeriodicalId":20705,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving part-load performance of combined-cycle gas turbines by optimizing variable geometry control strategy for compressor and power turbine combined adjustment\",\"authors\":\"Qi-an Xie, Hu Wu, Li-ping Deng\",\"doi\":\"10.1177/09576509241254578\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The variable geometry methods currently used in combined-cycle gas turbines are compressor variable inlet guide vanes (VIGV) or power turbine variable area nozzles (VAN). On this basis, this study presents the optimal variable geometry control strategy for compressor and power turbine combined adjustment ([Formula: see text]) using the Differential Evolutionary Algorithm with the LM2500+ gas turbine. The aim is to further improve the part-load performance of the combined-cycle gas turbine. Firstly, a part-load performance prediction model for variable geometry gas turbines is established based on the component method. Subsequently, a variable geometry gas turbine part-load performance optimization model is developed by combining the Differential Evolution Algorithm. Finally, the optimum combination of stagger angles for the compressor inlet vane and power turbine nozzle is calculated at each part-load condition. Compared to the VIGV and VAN control strategies, the [Formula: see text] control strategy proposed in this paper shows a higher stability margin and better economy. The [Formula: see text] control strategy maintains a constant exhaust temperature within a part load range from 20% to 100% with the stability margin exceeding 14%. In comparison with the VAN control strategy, the fuel flow rate decreases by 1.152% at 45% relative load power and by 3.435% at 20.0% relative load power with the [Formula: see text] control strategy.\",\"PeriodicalId\":20705,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/09576509241254578\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09576509241254578","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

目前在联合循环燃气轮机中使用的可变几何方法是压缩机可变进气导叶 (VIGV) 或动力涡轮机可变面积喷嘴 (VAN)。在此基础上,本研究采用差分进化算法,利用 LM2500+ 燃气轮机提出了压缩机和动力涡轮机联合调节([公式:见正文])的最佳可变几何控制策略。目的是进一步提高联合循环燃气轮机的部分负荷性能。首先,基于组件法建立了可变几何形状燃气轮机的部分负荷性能预测模型。随后,结合差分进化算法建立了可变几何燃气轮机部分负荷性能优化模型。最后,计算出在各部分负荷条件下压缩机进口叶片和动力涡轮喷嘴的最佳错开角组合。与 VIGV 和 VAN 控制策略相比,本文提出的[公式:见正文]控制策略具有更高的稳定裕度和更好的经济性。公式:见正文]控制策略可在 20% 至 100% 的部分负荷范围内保持恒定的排气温度,稳定裕度超过 14%。与 VAN 控制策略相比,采用[公式:见正文]控制策略后,在相对负荷功率为 45% 时,燃油流量减少了 1.152%;在相对负荷功率为 20.0% 时,燃油流量减少了 3.435%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improving part-load performance of combined-cycle gas turbines by optimizing variable geometry control strategy for compressor and power turbine combined adjustment
The variable geometry methods currently used in combined-cycle gas turbines are compressor variable inlet guide vanes (VIGV) or power turbine variable area nozzles (VAN). On this basis, this study presents the optimal variable geometry control strategy for compressor and power turbine combined adjustment ([Formula: see text]) using the Differential Evolutionary Algorithm with the LM2500+ gas turbine. The aim is to further improve the part-load performance of the combined-cycle gas turbine. Firstly, a part-load performance prediction model for variable geometry gas turbines is established based on the component method. Subsequently, a variable geometry gas turbine part-load performance optimization model is developed by combining the Differential Evolution Algorithm. Finally, the optimum combination of stagger angles for the compressor inlet vane and power turbine nozzle is calculated at each part-load condition. Compared to the VIGV and VAN control strategies, the [Formula: see text] control strategy proposed in this paper shows a higher stability margin and better economy. The [Formula: see text] control strategy maintains a constant exhaust temperature within a part load range from 20% to 100% with the stability margin exceeding 14%. In comparison with the VAN control strategy, the fuel flow rate decreases by 1.152% at 45% relative load power and by 3.435% at 20.0% relative load power with the [Formula: see text] control strategy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
5.90%
发文量
114
审稿时长
5.4 months
期刊介绍: The Journal of Power and Energy, Part A of the Proceedings of the Institution of Mechanical Engineers, is dedicated to publishing peer-reviewed papers of high scientific quality on all aspects of the technology of energy conversion systems.
期刊最新文献
Studies on fuels and engine attributes powered by bio-diesel and bio-oil derived from stone apple seed (Aegle marmelos) for bioenergy Analysis of the aerothermal performance of modern commercial high-pressure turbine rotors using different levels of fidelity Analytical modeling and performance improvement of an electric two-stage centrifugal compressor for fuel cell vehicles Investigations into rubbing wear behavior of honeycomb land against labyrinth fin with periodic-cell model Secondary air induced flow structures and their interplay with the temperature field in fixed bed combustors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1