{"title":"用于多波段光网络的光子波分复用交换机架构","authors":"Shiyi Xia;Zhouyi Hu;Marijn Rombouts;Henrique Freire Santana;Yu Wang;Aref Rasoulzadeh Zali;Oded Raz;Nicola Calabretta","doi":"10.1364/JOCN.522806","DOIUrl":null,"url":null,"abstract":"Addressing the capacity, low cost, and low power challenges of 6G distribution networks, this paper proposes and demonstrates a multi-band optical metro-access network architecture employing semiconductor optical amplifier (SOA)-based wavelength division multiplexing (WDM) switches as low-cost and low-power multi-band optical add-drop multiplexers (MB-OADMs) to extend the capacity beyond C-band limits. We implemented and evaluated the performance of an SOA-based MB-OADM prototype in the C- and O-bands including the network reconfigurability, the node scalability, and the capability to support high-capacity transmission. Experimental results show that the MB-OADM-based network maintains high optical signal-to-noise ratio (OSNR) values up to 35.38 dB in the C-band and 33.56 dB in the O-band over 100 km across five nodes with a 20 km linkspan in between (a total of 100 km) without additional optical amplifiers at 25 Gbps. This work also assesses the MB-OADM-based network scalability in terms of nodes and data rate. Results indicated that the architecture supports cascading through nine C-band nodes over 45 km with a 3.6 dB power penalty at 25 Gbps for a bit error rate (BER) of \n<tex>${{10}^{- 6}}$</tex>\n and through four O-band nodes with a 3 dB penalty at 25 Gbps for a BER of \n<tex>${{10}^{- 6}}$</tex>\n, maintaining nearly uniform power levels across channels at a BER under the FEC threshold. It successfully demonstrates PAM-4 at 50 Gbps and 100 Gbps data rate transmission operation crossing four nodes over a 4 km distance, with 2 dB and 2.4 dB power penalty at a BER of \n<tex>${{10}^{- 3}}$</tex>\n in the C-band and 1.85 dB and 2.2 dB power penalty at a BER of \n<tex>${{10}^{- 3}}$</tex>\n in the O-band, respectively.","PeriodicalId":50103,"journal":{"name":"Journal of Optical Communications and Networking","volume":"16 8","pages":"D18-D28"},"PeriodicalIF":4.0000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Photonic WDM switches architecture for multi-band optical networks\",\"authors\":\"Shiyi Xia;Zhouyi Hu;Marijn Rombouts;Henrique Freire Santana;Yu Wang;Aref Rasoulzadeh Zali;Oded Raz;Nicola Calabretta\",\"doi\":\"10.1364/JOCN.522806\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Addressing the capacity, low cost, and low power challenges of 6G distribution networks, this paper proposes and demonstrates a multi-band optical metro-access network architecture employing semiconductor optical amplifier (SOA)-based wavelength division multiplexing (WDM) switches as low-cost and low-power multi-band optical add-drop multiplexers (MB-OADMs) to extend the capacity beyond C-band limits. We implemented and evaluated the performance of an SOA-based MB-OADM prototype in the C- and O-bands including the network reconfigurability, the node scalability, and the capability to support high-capacity transmission. Experimental results show that the MB-OADM-based network maintains high optical signal-to-noise ratio (OSNR) values up to 35.38 dB in the C-band and 33.56 dB in the O-band over 100 km across five nodes with a 20 km linkspan in between (a total of 100 km) without additional optical amplifiers at 25 Gbps. This work also assesses the MB-OADM-based network scalability in terms of nodes and data rate. Results indicated that the architecture supports cascading through nine C-band nodes over 45 km with a 3.6 dB power penalty at 25 Gbps for a bit error rate (BER) of \\n<tex>${{10}^{- 6}}$</tex>\\n and through four O-band nodes with a 3 dB penalty at 25 Gbps for a BER of \\n<tex>${{10}^{- 6}}$</tex>\\n, maintaining nearly uniform power levels across channels at a BER under the FEC threshold. It successfully demonstrates PAM-4 at 50 Gbps and 100 Gbps data rate transmission operation crossing four nodes over a 4 km distance, with 2 dB and 2.4 dB power penalty at a BER of \\n<tex>${{10}^{- 3}}$</tex>\\n in the C-band and 1.85 dB and 2.2 dB power penalty at a BER of \\n<tex>${{10}^{- 3}}$</tex>\\n in the O-band, respectively.\",\"PeriodicalId\":50103,\"journal\":{\"name\":\"Journal of Optical Communications and Networking\",\"volume\":\"16 8\",\"pages\":\"D18-D28\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Optical Communications and Networking\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10554544/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Optical Communications and Networking","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10554544/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Photonic WDM switches architecture for multi-band optical networks
Addressing the capacity, low cost, and low power challenges of 6G distribution networks, this paper proposes and demonstrates a multi-band optical metro-access network architecture employing semiconductor optical amplifier (SOA)-based wavelength division multiplexing (WDM) switches as low-cost and low-power multi-band optical add-drop multiplexers (MB-OADMs) to extend the capacity beyond C-band limits. We implemented and evaluated the performance of an SOA-based MB-OADM prototype in the C- and O-bands including the network reconfigurability, the node scalability, and the capability to support high-capacity transmission. Experimental results show that the MB-OADM-based network maintains high optical signal-to-noise ratio (OSNR) values up to 35.38 dB in the C-band and 33.56 dB in the O-band over 100 km across five nodes with a 20 km linkspan in between (a total of 100 km) without additional optical amplifiers at 25 Gbps. This work also assesses the MB-OADM-based network scalability in terms of nodes and data rate. Results indicated that the architecture supports cascading through nine C-band nodes over 45 km with a 3.6 dB power penalty at 25 Gbps for a bit error rate (BER) of
${{10}^{- 6}}$
and through four O-band nodes with a 3 dB penalty at 25 Gbps for a BER of
${{10}^{- 6}}$
, maintaining nearly uniform power levels across channels at a BER under the FEC threshold. It successfully demonstrates PAM-4 at 50 Gbps and 100 Gbps data rate transmission operation crossing four nodes over a 4 km distance, with 2 dB and 2.4 dB power penalty at a BER of
${{10}^{- 3}}$
in the C-band and 1.85 dB and 2.2 dB power penalty at a BER of
${{10}^{- 3}}$
in the O-band, respectively.
期刊介绍:
The scope of the Journal includes advances in the state-of-the-art of optical networking science, technology, and engineering. Both theoretical contributions (including new techniques, concepts, analyses, and economic studies) and practical contributions (including optical networking experiments, prototypes, and new applications) are encouraged. Subareas of interest include the architecture and design of optical networks, optical network survivability and security, software-defined optical networking, elastic optical networks, data and control plane advances, network management related innovation, and optical access networks. Enabling technologies and their applications are suitable topics only if the results are shown to directly impact optical networking beyond simple point-to-point networks.