基于优化传感器位置的框架结构有限元模型更新和响应预测

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-05-21 DOI:10.1177/13694332241255732
Xiaoguang Wang, Peng Liang, Ming Ma, Zhenwei Zhou, Gang Wu, Shuai Song
{"title":"基于优化传感器位置的框架结构有限元模型更新和响应预测","authors":"Xiaoguang Wang, Peng Liang, Ming Ma, Zhenwei Zhou, Gang Wu, Shuai Song","doi":"10.1177/13694332241255732","DOIUrl":null,"url":null,"abstract":"This paper proposes an approach for finite element (FE) model updating and response prediction of frame structures based on optimal sensor placement (OSP), which integrates sensor placement optimization, mode expansion, and model updating techniques. Firstly, sensor optimization layout and modal testing analysis are conducted on a bolted laboratory frame structure. The covariance-driven stochastic subspace identification (SSI-COV) method identifies the real-world structure’s natural frequencies, modal damping, and mode shapes. Secondly, the complete mode shapes are expanded using the measured incomplete modal data from the limited number of sensors. Thirdly, a multi-objective function based on frequency and mode shapes is established to adjust the parameters of the FE model. This ensures that the updated model accurately represents the dynamic properties of the actual structure within a specific frequency range. Finally, the Rayleigh damping of the frame structure is estimated, and the damping matrix is assembled to enhance the accuracy of dynamic response prediction in the updated model. By comparing the response prediction results of the updated FE model with and without considering the updated damping effects to the measurement data of the real-world structure, it is demonstrated that the proposed method considering updated damping effects can more effectively predict the structural response.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Finite element model updating and response prediction of a frame structure based on optimal sensor placement\",\"authors\":\"Xiaoguang Wang, Peng Liang, Ming Ma, Zhenwei Zhou, Gang Wu, Shuai Song\",\"doi\":\"10.1177/13694332241255732\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes an approach for finite element (FE) model updating and response prediction of frame structures based on optimal sensor placement (OSP), which integrates sensor placement optimization, mode expansion, and model updating techniques. Firstly, sensor optimization layout and modal testing analysis are conducted on a bolted laboratory frame structure. The covariance-driven stochastic subspace identification (SSI-COV) method identifies the real-world structure’s natural frequencies, modal damping, and mode shapes. Secondly, the complete mode shapes are expanded using the measured incomplete modal data from the limited number of sensors. Thirdly, a multi-objective function based on frequency and mode shapes is established to adjust the parameters of the FE model. This ensures that the updated model accurately represents the dynamic properties of the actual structure within a specific frequency range. Finally, the Rayleigh damping of the frame structure is estimated, and the damping matrix is assembled to enhance the accuracy of dynamic response prediction in the updated model. By comparing the response prediction results of the updated FE model with and without considering the updated damping effects to the measurement data of the real-world structure, it is demonstrated that the proposed method considering updated damping effects can more effectively predict the structural response.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/13694332241255732\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/13694332241255732","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于优化传感器布置(OSP)的框架结构有限元(FE)模型更新和响应预测方法,该方法集成了传感器布置优化、模态扩展和模型更新技术。首先,在螺栓连接的实验室框架结构上进行了传感器优化布局和模态测试分析。协方差驱动随机子空间识别(SSI-COV)方法可识别真实世界结构的固有频率、模态阻尼和模态振型。其次,利用有限传感器测量到的不完整模态数据扩展完整的模态振型。第三,建立基于频率和模态振型的多目标函数,以调整 FE 模型的参数。这可确保更新后的模型在特定频率范围内准确地反映实际结构的动态特性。最后,对框架结构的瑞利阻尼进行估计,并组装阻尼矩阵,以提高更新模型的动态响应预测精度。通过将考虑和不考虑更新阻尼效应的更新 FE 模型的响应预测结果与实际结构的测量数据进行比较,证明所提出的考虑更新阻尼效应的方法能更有效地预测结构响应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Finite element model updating and response prediction of a frame structure based on optimal sensor placement
This paper proposes an approach for finite element (FE) model updating and response prediction of frame structures based on optimal sensor placement (OSP), which integrates sensor placement optimization, mode expansion, and model updating techniques. Firstly, sensor optimization layout and modal testing analysis are conducted on a bolted laboratory frame structure. The covariance-driven stochastic subspace identification (SSI-COV) method identifies the real-world structure’s natural frequencies, modal damping, and mode shapes. Secondly, the complete mode shapes are expanded using the measured incomplete modal data from the limited number of sensors. Thirdly, a multi-objective function based on frequency and mode shapes is established to adjust the parameters of the FE model. This ensures that the updated model accurately represents the dynamic properties of the actual structure within a specific frequency range. Finally, the Rayleigh damping of the frame structure is estimated, and the damping matrix is assembled to enhance the accuracy of dynamic response prediction in the updated model. By comparing the response prediction results of the updated FE model with and without considering the updated damping effects to the measurement data of the real-world structure, it is demonstrated that the proposed method considering updated damping effects can more effectively predict the structural response.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1