{"title":"基于改进 PSO 算法的爬墙机器人步态轨迹规划研究","authors":"Jian Li, Xianlin Shi, Peng Liang, Yanjun Li, Yilin Lv, Mingyue Zhong, Zezhong Han","doi":"10.1007/s42235-024-00538-y","DOIUrl":null,"url":null,"abstract":"<div><p>In order to reduce the labor intensity of high-altitude workers and realize the cleaning and maintenance of high-rise building exteriors, this paper proposes a design for a 4-DOF bipedal wall-climbing bionic robot inspired by the inchworm’s movement. The robot utilizes vacuum adsorption for vertical wall attachment and legged movement for locomotion. To enhance the robot’s movement efficiency and reduce wear on the adsorption device, a gait mimicking an inchworm’s movement is planned, and foot trajectory planning is performed using a quintic polynomial function. Under velocity constraints, foot trajectory optimization is achieved using an improved Particle Swarm Optimization (PSO) algorithm, determining the quintic polynomial function with the best fitness through simulation. Finally, through comparative experiments, the climbing time of the robot closely matches the simulation results, validating the trajectory planning method’s accuracy.</p></div>","PeriodicalId":614,"journal":{"name":"Journal of Bionic Engineering","volume":"21 4","pages":"1747 - 1760"},"PeriodicalIF":4.9000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on Gait Trajectory Planning of Wall-Climbing Robot Based on Improved PSO Algorithm\",\"authors\":\"Jian Li, Xianlin Shi, Peng Liang, Yanjun Li, Yilin Lv, Mingyue Zhong, Zezhong Han\",\"doi\":\"10.1007/s42235-024-00538-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In order to reduce the labor intensity of high-altitude workers and realize the cleaning and maintenance of high-rise building exteriors, this paper proposes a design for a 4-DOF bipedal wall-climbing bionic robot inspired by the inchworm’s movement. The robot utilizes vacuum adsorption for vertical wall attachment and legged movement for locomotion. To enhance the robot’s movement efficiency and reduce wear on the adsorption device, a gait mimicking an inchworm’s movement is planned, and foot trajectory planning is performed using a quintic polynomial function. Under velocity constraints, foot trajectory optimization is achieved using an improved Particle Swarm Optimization (PSO) algorithm, determining the quintic polynomial function with the best fitness through simulation. Finally, through comparative experiments, the climbing time of the robot closely matches the simulation results, validating the trajectory planning method’s accuracy.</p></div>\",\"PeriodicalId\":614,\"journal\":{\"name\":\"Journal of Bionic Engineering\",\"volume\":\"21 4\",\"pages\":\"1747 - 1760\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Bionic Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42235-024-00538-y\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bionic Engineering","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s42235-024-00538-y","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Research on Gait Trajectory Planning of Wall-Climbing Robot Based on Improved PSO Algorithm
In order to reduce the labor intensity of high-altitude workers and realize the cleaning and maintenance of high-rise building exteriors, this paper proposes a design for a 4-DOF bipedal wall-climbing bionic robot inspired by the inchworm’s movement. The robot utilizes vacuum adsorption for vertical wall attachment and legged movement for locomotion. To enhance the robot’s movement efficiency and reduce wear on the adsorption device, a gait mimicking an inchworm’s movement is planned, and foot trajectory planning is performed using a quintic polynomial function. Under velocity constraints, foot trajectory optimization is achieved using an improved Particle Swarm Optimization (PSO) algorithm, determining the quintic polynomial function with the best fitness through simulation. Finally, through comparative experiments, the climbing time of the robot closely matches the simulation results, validating the trajectory planning method’s accuracy.
期刊介绍:
The Journal of Bionic Engineering (JBE) is a peer-reviewed journal that publishes original research papers and reviews that apply the knowledge learned from nature and biological systems to solve concrete engineering problems. The topics that JBE covers include but are not limited to:
Mechanisms, kinematical mechanics and control of animal locomotion, development of mobile robots with walking (running and crawling), swimming or flying abilities inspired by animal locomotion.
Structures, morphologies, composition and physical properties of natural and biomaterials; fabrication of new materials mimicking the properties and functions of natural and biomaterials.
Biomedical materials, artificial organs and tissue engineering for medical applications; rehabilitation equipment and devices.
Development of bioinspired computation methods and artificial intelligence for engineering applications.