电泳沉积微米级或纳米级二氧化硅颗粒对碳纤维微观结构及其与水泥基材料粘结行为的影响

IF 3.4 3区 工程技术 Q2 CONSTRUCTION & BUILDING TECHNOLOGY Materials and Structures Pub Date : 2024-05-20 DOI:10.1617/s11527-024-02355-5
Huanyu Li, Marco Liebscher, Jian Yang, Yupeng Zhang, Viktor Mechtcherine
{"title":"电泳沉积微米级或纳米级二氧化硅颗粒对碳纤维微观结构及其与水泥基材料粘结行为的影响","authors":"Huanyu Li,&nbsp;Marco Liebscher,&nbsp;Jian Yang,&nbsp;Yupeng Zhang,&nbsp;Viktor Mechtcherine","doi":"10.1617/s11527-024-02355-5","DOIUrl":null,"url":null,"abstract":"<div><p>The application of carbon fiber (CF) reinforced cementitious composites is often restricted by the poor load transfer between the components. In this study, two reactive coating materials—nano-silica and micro-silica—are utilized to modify the CF surfaces via an electrophoretic deposition approach. These negatively charged particles are able to be electrosorbed onto the fiber surfaces under a constant electrical field according to the zeta and cyclic voltammetry measurements. After surface treatment, XRD analysis of CFs showed an increase in graphite crystallite thickness and decrement in interlayer spacing <span>\\({d}_{002}\\)</span>, significantly affecting the fiber diameters. Additionally, the lengths of crystallites were reduced, which can impair the fiber strength and their temperature stability. Single fiber pullout tests exhibited that the interfacial bonding can be clearly enhanced by both reactive coatings. Microscopic observation revealed that C–S–H gel and calcite structures can be formed near the fiber surfaces after immersion in cement pore solution owing to pozzolanic reaction and nucleation effect, tremendously heightening both chemical and mechanical interaction between fiber and cement. Finally, based on a detailed micromechanical analysis, the reinforcing mechanisms between the differently modified fibers and the cementitious matrix were elaborated and discussed.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":691,"journal":{"name":"Materials and Structures","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1617/s11527-024-02355-5.pdf","citationCount":"0","resultStr":"{\"title\":\"Influence of electrophoretic deposition of micro- or nanosized silica particles on the microstructure of carbon fibers and their bond behavior with cementitious matrices\",\"authors\":\"Huanyu Li,&nbsp;Marco Liebscher,&nbsp;Jian Yang,&nbsp;Yupeng Zhang,&nbsp;Viktor Mechtcherine\",\"doi\":\"10.1617/s11527-024-02355-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The application of carbon fiber (CF) reinforced cementitious composites is often restricted by the poor load transfer between the components. In this study, two reactive coating materials—nano-silica and micro-silica—are utilized to modify the CF surfaces via an electrophoretic deposition approach. These negatively charged particles are able to be electrosorbed onto the fiber surfaces under a constant electrical field according to the zeta and cyclic voltammetry measurements. After surface treatment, XRD analysis of CFs showed an increase in graphite crystallite thickness and decrement in interlayer spacing <span>\\\\({d}_{002}\\\\)</span>, significantly affecting the fiber diameters. Additionally, the lengths of crystallites were reduced, which can impair the fiber strength and their temperature stability. Single fiber pullout tests exhibited that the interfacial bonding can be clearly enhanced by both reactive coatings. Microscopic observation revealed that C–S–H gel and calcite structures can be formed near the fiber surfaces after immersion in cement pore solution owing to pozzolanic reaction and nucleation effect, tremendously heightening both chemical and mechanical interaction between fiber and cement. Finally, based on a detailed micromechanical analysis, the reinforcing mechanisms between the differently modified fibers and the cementitious matrix were elaborated and discussed.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":691,\"journal\":{\"name\":\"Materials and Structures\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1617/s11527-024-02355-5.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials and Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1617/s11527-024-02355-5\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials and Structures","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1617/s11527-024-02355-5","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

碳纤维(CF)增强水泥基复合材料的应用往往受到部件间载荷传递不良的限制。在本研究中,通过电泳沉积方法,利用两种活性涂层材料--纳米二氧化硅和微米二氧化硅--对碳纤维表面进行改性。根据 zeta 和循环伏安法测量结果,这些带负电的颗粒能够在恒定电场下被电吸附到纤维表面。经过表面处理后,CF 的 XRD 分析表明石墨晶粒厚度增加,层间间距减小,从而显著影响了纤维的直径。此外,结晶体的长度也有所减少,这可能会影响纤维的强度及其温度稳定性。单根纤维拉拔测试表明,两种反应涂层都能明显增强界面结合力。显微镜观察发现,在水泥孔隙溶液中浸泡后,由于水胶硫反应和成核效应,纤维表面附近可形成 C-S-H 凝胶和方解石结构,极大地增强了纤维与水泥之间的化学和机械相互作用。最后,基于详细的微观力学分析,阐述并讨论了不同改性纤维与水泥基体之间的增强机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Influence of electrophoretic deposition of micro- or nanosized silica particles on the microstructure of carbon fibers and their bond behavior with cementitious matrices

The application of carbon fiber (CF) reinforced cementitious composites is often restricted by the poor load transfer between the components. In this study, two reactive coating materials—nano-silica and micro-silica—are utilized to modify the CF surfaces via an electrophoretic deposition approach. These negatively charged particles are able to be electrosorbed onto the fiber surfaces under a constant electrical field according to the zeta and cyclic voltammetry measurements. After surface treatment, XRD analysis of CFs showed an increase in graphite crystallite thickness and decrement in interlayer spacing \({d}_{002}\), significantly affecting the fiber diameters. Additionally, the lengths of crystallites were reduced, which can impair the fiber strength and their temperature stability. Single fiber pullout tests exhibited that the interfacial bonding can be clearly enhanced by both reactive coatings. Microscopic observation revealed that C–S–H gel and calcite structures can be formed near the fiber surfaces after immersion in cement pore solution owing to pozzolanic reaction and nucleation effect, tremendously heightening both chemical and mechanical interaction between fiber and cement. Finally, based on a detailed micromechanical analysis, the reinforcing mechanisms between the differently modified fibers and the cementitious matrix were elaborated and discussed.

Graphical abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials and Structures
Materials and Structures 工程技术-材料科学:综合
CiteScore
6.40
自引率
7.90%
发文量
222
审稿时长
5.9 months
期刊介绍: Materials and Structures, the flagship publication of the International Union of Laboratories and Experts in Construction Materials, Systems and Structures (RILEM), provides a unique international and interdisciplinary forum for new research findings on the performance of construction materials. A leader in cutting-edge research, the journal is dedicated to the publication of high quality papers examining the fundamental properties of building materials, their characterization and processing techniques, modeling, standardization of test methods, and the application of research results in building and civil engineering. Materials and Structures also publishes comprehensive reports prepared by the RILEM’s technical committees.
期刊最新文献
Effect of activator dosage and mass ratio of GGBFS to FA on 3D printing performance of kenaf geopolymer Investigation into the flexural performance of novel precast sandwich wall panels Inorganic–organic hybrid geopolymers: evolution of molecular and pore structure, and its effect on mechanical and fire-retardant properties Assessment of waste eggshell powder as a limestone alternative in portland cement Autogenous shrinkage and cracking of ultra-high-performance concrete with soda residue as an internal curing agent
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1