基于摩擦和大脑激活的粘性感知研究

IF 4.9 3区 计算机科学 Q1 ENGINEERING, MULTIDISCIPLINARY Journal of Bionic Engineering Pub Date : 2024-05-20 DOI:10.1007/s42235-024-00527-1
Xingxing Fang, Wei Tang, Shousheng Zhang, Tengfei Zhuang
{"title":"基于摩擦和大脑激活的粘性感知研究","authors":"Xingxing Fang,&nbsp;Wei Tang,&nbsp;Shousheng Zhang,&nbsp;Tengfei Zhuang","doi":"10.1007/s42235-024-00527-1","DOIUrl":null,"url":null,"abstract":"<div><p>The enhancement of adhesive perception is crucial to maintaining a stable and comfortable grip of the skin-touch products. To study the tactile perception of adhesive surfaces, subjective evaluation, skin friction and vibrations, and neurophysiological response of the brain activity were investigated systematically. Silicone materials, which are commonly used for bionic materials and skin-touch products, were chosen for the tactile stimulus. The results showed that with the increasing of surface adhesion, the dominant friction transferred from a combination of adhesive friction and deformation friction to adhesive friction. The friction coefficient and vibration amplitude had strong correlations with the perceived adhesion of surfaces. The parietal lobe and occipital lobe were involved in adhesive perceptions, and the area and intensity of brain activation increased with the increasing surface adhesion. Surfaces with larger adhesion tended to excite a high P300 amplitude and short latency, indicating that the judgment was faster and that more attentional resources were involved in adhesive perception. Furthermore, the electroencephalograph signals of the adhesive perception were simulated by the neural mass model. It demonstrated that the excitability and intensity of brain activity, and the connectivity strength between two neural masses increased with the increasing surface adhesion. This study is meaningful to understand the role of surface adhesion in tactile friction and the cognitive mechanism in adhesive perception to improve the tactile experience of adhesive materials.</p></div>","PeriodicalId":614,"journal":{"name":"Journal of Bionic Engineering","volume":"21 4","pages":"1862 - 1877"},"PeriodicalIF":4.9000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of Adhesive Perception Based on Friction and Brain Activation\",\"authors\":\"Xingxing Fang,&nbsp;Wei Tang,&nbsp;Shousheng Zhang,&nbsp;Tengfei Zhuang\",\"doi\":\"10.1007/s42235-024-00527-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The enhancement of adhesive perception is crucial to maintaining a stable and comfortable grip of the skin-touch products. To study the tactile perception of adhesive surfaces, subjective evaluation, skin friction and vibrations, and neurophysiological response of the brain activity were investigated systematically. Silicone materials, which are commonly used for bionic materials and skin-touch products, were chosen for the tactile stimulus. The results showed that with the increasing of surface adhesion, the dominant friction transferred from a combination of adhesive friction and deformation friction to adhesive friction. The friction coefficient and vibration amplitude had strong correlations with the perceived adhesion of surfaces. The parietal lobe and occipital lobe were involved in adhesive perceptions, and the area and intensity of brain activation increased with the increasing surface adhesion. Surfaces with larger adhesion tended to excite a high P300 amplitude and short latency, indicating that the judgment was faster and that more attentional resources were involved in adhesive perception. Furthermore, the electroencephalograph signals of the adhesive perception were simulated by the neural mass model. It demonstrated that the excitability and intensity of brain activity, and the connectivity strength between two neural masses increased with the increasing surface adhesion. This study is meaningful to understand the role of surface adhesion in tactile friction and the cognitive mechanism in adhesive perception to improve the tactile experience of adhesive materials.</p></div>\",\"PeriodicalId\":614,\"journal\":{\"name\":\"Journal of Bionic Engineering\",\"volume\":\"21 4\",\"pages\":\"1862 - 1877\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Bionic Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42235-024-00527-1\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bionic Engineering","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s42235-024-00527-1","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

增强对粘合剂的感知对于保持皮肤接触产品的稳定和舒适抓握至关重要。为了研究粘合剂表面的触觉感知,我们对主观评价、皮肤摩擦和振动以及大脑活动的神经生理反应进行了系统研究。触觉刺激选择了常用于仿生材料和皮肤触感产品的硅胶材料。结果表明,随着表面附着力的增加,主要摩擦力从粘着摩擦和变形摩擦的组合转移到粘着摩擦。摩擦系数和振动幅度与感觉到的表面附着力有很强的相关性。顶叶和枕叶参与了粘附感知,大脑激活的面积和强度随着表面粘附力的增加而增加。附着力较大的表面往往会激发较高的 P300 振幅和较短的潜伏期,这表明判断速度较快,附着力感知涉及更多的注意力资源。此外,还利用神经质模型模拟了粘附感知的脑电信号。结果表明,大脑活动的兴奋性和强度以及两个神经块之间的连接强度随着表面粘附力的增加而增加。这项研究对于了解表面附着力在触觉摩擦中的作用以及粘合感知的认知机制,从而改善粘合材料的触觉体验具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Investigation of Adhesive Perception Based on Friction and Brain Activation

The enhancement of adhesive perception is crucial to maintaining a stable and comfortable grip of the skin-touch products. To study the tactile perception of adhesive surfaces, subjective evaluation, skin friction and vibrations, and neurophysiological response of the brain activity were investigated systematically. Silicone materials, which are commonly used for bionic materials and skin-touch products, were chosen for the tactile stimulus. The results showed that with the increasing of surface adhesion, the dominant friction transferred from a combination of adhesive friction and deformation friction to adhesive friction. The friction coefficient and vibration amplitude had strong correlations with the perceived adhesion of surfaces. The parietal lobe and occipital lobe were involved in adhesive perceptions, and the area and intensity of brain activation increased with the increasing surface adhesion. Surfaces with larger adhesion tended to excite a high P300 amplitude and short latency, indicating that the judgment was faster and that more attentional resources were involved in adhesive perception. Furthermore, the electroencephalograph signals of the adhesive perception were simulated by the neural mass model. It demonstrated that the excitability and intensity of brain activity, and the connectivity strength between two neural masses increased with the increasing surface adhesion. This study is meaningful to understand the role of surface adhesion in tactile friction and the cognitive mechanism in adhesive perception to improve the tactile experience of adhesive materials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Bionic Engineering
Journal of Bionic Engineering 工程技术-材料科学:生物材料
CiteScore
7.10
自引率
10.00%
发文量
162
审稿时长
10.0 months
期刊介绍: The Journal of Bionic Engineering (JBE) is a peer-reviewed journal that publishes original research papers and reviews that apply the knowledge learned from nature and biological systems to solve concrete engineering problems. The topics that JBE covers include but are not limited to: Mechanisms, kinematical mechanics and control of animal locomotion, development of mobile robots with walking (running and crawling), swimming or flying abilities inspired by animal locomotion. Structures, morphologies, composition and physical properties of natural and biomaterials; fabrication of new materials mimicking the properties and functions of natural and biomaterials. Biomedical materials, artificial organs and tissue engineering for medical applications; rehabilitation equipment and devices. Development of bioinspired computation methods and artificial intelligence for engineering applications.
期刊最新文献
Sandwich-Structured Solar Cells with Accelerated Conversion Efficiency by Self-Cooling and Self-Cleaning Design From Perception to Action: Brain-to-Brain Information Transmission of Pigeons Design and Motion Characteristics of a Ray-Inspired Micro-Robot Made of Magnetic Film Bionic Jumping of Humanoid Robot via Online Centroid Trajectory Optimization and High Dynamic Motion Controller Multi-Sensor Fusion for State Estimation and Control of Cable-Driven Soft Robots
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1