Francesco Fancello, Giacomo Zara, Forough Hatami, Efisio Antonio Scano, Ilaria Mannazzu
{"title":"发掘二次奶酪乳清的潜力:价值评估战略综合评述","authors":"Francesco Fancello, Giacomo Zara, Forough Hatami, Efisio Antonio Scano, Ilaria Mannazzu","doi":"10.1007/s11157-024-09687-2","DOIUrl":null,"url":null,"abstract":"<div><p>The second cheese whey (SCW) is the liquid fraction that remains after the production of whey-cheeses. SCW appears as a white to yellow/green opalescent liquid with suspended solids and contains up to 6% lactose and variable amounts of proteins, fats, and mineral salts. Due to its organic load, SCW is characterized by levels of Biochemical Oxygen Demand and Chemical Oxygen Demand that are significantly higher than urban wastewater. Therefore, it poses an environmental challenge and represents a significant cost and a problem for cheese production facilities when it comes to disposal. On the flip side, SCW contains valuable nutrients that make it a cost-effective substrate for bio-based productions including lactose extraction, and the production of lactic acid, bioethanol, eco-friendly bioplastics, biofuels, beverages, bioactive peptides, and microbial starters. A search in Scopus database indicates that despite the numerous potential applications, interest in SCW exploitation is surprisingly limited and, accordingly, sustainable management of SCW disposal remains an unresolved issue. In this review, which marks the first exclusive focus on SCW, with the aim of contributing to increase the interest of both the scientific community and the stakeholders in the exploitation of this by-product, the processes aimed at SCW valorisation will be described, with particular attention to its use in the production of beverages, food and feed, single cell proteins and as a source of biodegradable bioplastics, organic acids and renewable energy. Moreover, to provide valuable insights into its applications and innovations, an overview on patents regarding the exploitation of SCW will be presented.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":754,"journal":{"name":"Reviews in Environmental Science and Bio/Technology","volume":"23 2","pages":"411 - 441"},"PeriodicalIF":8.6000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11157-024-09687-2.pdf","citationCount":"0","resultStr":"{\"title\":\"Unlocking the potential of second cheese whey: a comprehensive review on valorisation strategies\",\"authors\":\"Francesco Fancello, Giacomo Zara, Forough Hatami, Efisio Antonio Scano, Ilaria Mannazzu\",\"doi\":\"10.1007/s11157-024-09687-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The second cheese whey (SCW) is the liquid fraction that remains after the production of whey-cheeses. SCW appears as a white to yellow/green opalescent liquid with suspended solids and contains up to 6% lactose and variable amounts of proteins, fats, and mineral salts. Due to its organic load, SCW is characterized by levels of Biochemical Oxygen Demand and Chemical Oxygen Demand that are significantly higher than urban wastewater. Therefore, it poses an environmental challenge and represents a significant cost and a problem for cheese production facilities when it comes to disposal. On the flip side, SCW contains valuable nutrients that make it a cost-effective substrate for bio-based productions including lactose extraction, and the production of lactic acid, bioethanol, eco-friendly bioplastics, biofuels, beverages, bioactive peptides, and microbial starters. A search in Scopus database indicates that despite the numerous potential applications, interest in SCW exploitation is surprisingly limited and, accordingly, sustainable management of SCW disposal remains an unresolved issue. In this review, which marks the first exclusive focus on SCW, with the aim of contributing to increase the interest of both the scientific community and the stakeholders in the exploitation of this by-product, the processes aimed at SCW valorisation will be described, with particular attention to its use in the production of beverages, food and feed, single cell proteins and as a source of biodegradable bioplastics, organic acids and renewable energy. Moreover, to provide valuable insights into its applications and innovations, an overview on patents regarding the exploitation of SCW will be presented.</p><h3>Graphical Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":754,\"journal\":{\"name\":\"Reviews in Environmental Science and Bio/Technology\",\"volume\":\"23 2\",\"pages\":\"411 - 441\"},\"PeriodicalIF\":8.6000,\"publicationDate\":\"2024-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11157-024-09687-2.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reviews in Environmental Science and Bio/Technology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11157-024-09687-2\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews in Environmental Science and Bio/Technology","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s11157-024-09687-2","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Unlocking the potential of second cheese whey: a comprehensive review on valorisation strategies
The second cheese whey (SCW) is the liquid fraction that remains after the production of whey-cheeses. SCW appears as a white to yellow/green opalescent liquid with suspended solids and contains up to 6% lactose and variable amounts of proteins, fats, and mineral salts. Due to its organic load, SCW is characterized by levels of Biochemical Oxygen Demand and Chemical Oxygen Demand that are significantly higher than urban wastewater. Therefore, it poses an environmental challenge and represents a significant cost and a problem for cheese production facilities when it comes to disposal. On the flip side, SCW contains valuable nutrients that make it a cost-effective substrate for bio-based productions including lactose extraction, and the production of lactic acid, bioethanol, eco-friendly bioplastics, biofuels, beverages, bioactive peptides, and microbial starters. A search in Scopus database indicates that despite the numerous potential applications, interest in SCW exploitation is surprisingly limited and, accordingly, sustainable management of SCW disposal remains an unresolved issue. In this review, which marks the first exclusive focus on SCW, with the aim of contributing to increase the interest of both the scientific community and the stakeholders in the exploitation of this by-product, the processes aimed at SCW valorisation will be described, with particular attention to its use in the production of beverages, food and feed, single cell proteins and as a source of biodegradable bioplastics, organic acids and renewable energy. Moreover, to provide valuable insights into its applications and innovations, an overview on patents regarding the exploitation of SCW will be presented.
期刊介绍:
Reviews in Environmental Science and Bio/Technology is a publication that offers easily comprehensible, reliable, and well-rounded perspectives and evaluations in the realm of environmental science and (bio)technology. It disseminates the most recent progressions and timely compilations of groundbreaking scientific discoveries, technological advancements, practical applications, policy developments, and societal concerns encompassing all facets of environmental science and (bio)technology. Furthermore, it tackles broader aspects beyond the natural sciences, incorporating subjects such as education, funding, policy-making, intellectual property, and societal influence.