{"title":"确定使用 CFRP 片材加固 RC 梁的最佳改造方法","authors":"Sreekanth Gandla Nanabala, Balamurugan S","doi":"10.54392/irjmt24315","DOIUrl":null,"url":null,"abstract":"Recently the formation of disasters like earthquakes, Tsunami, etc., are quite common in all parts of the world. Due to the disasters the existence of loss to property as well as human life is quite common and more to avoid/decrease the damage due to disasters, strengthening a structure is one parameter. Retrofitting is the use of revolutionary technology to reinforce the structural elements to resist the upcoming damage due to disaster. In this paper carbon fiber reinforced polymer strengthening is considered for retrofitting technique. Carbon fiber reinforced polymer sheets of 50 mm width are used and wrapped on the beams with four different orientations like 00, 450, 600 and 900. Experimentally ten beams are casted in which two beams are marked as control beams and in remaining eight beam, every two beams are used for each orientation. The beams are subjected to four-point loading, and the greatest deflections and cracks at the beam center are recorded. The beams are tested for flexural loading and studied different parameters like maximum deflection, maximum load, Initial crack load etc are compared. With an emphasis on RC beams specifically, the goal of this work is to close the current research gap by examining the behavior of fiber reinforced polymer orientation in concrete elements. A beam covered with 50 mm strips at a 45-degree angle produced better results than the remaining beams.","PeriodicalId":14412,"journal":{"name":"International Research Journal of Multidisciplinary Technovation","volume":" 407","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification of Optimum Retrofitting Approach for Strengthening RC Beams using CFRP Sheets\",\"authors\":\"Sreekanth Gandla Nanabala, Balamurugan S\",\"doi\":\"10.54392/irjmt24315\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently the formation of disasters like earthquakes, Tsunami, etc., are quite common in all parts of the world. Due to the disasters the existence of loss to property as well as human life is quite common and more to avoid/decrease the damage due to disasters, strengthening a structure is one parameter. Retrofitting is the use of revolutionary technology to reinforce the structural elements to resist the upcoming damage due to disaster. In this paper carbon fiber reinforced polymer strengthening is considered for retrofitting technique. Carbon fiber reinforced polymer sheets of 50 mm width are used and wrapped on the beams with four different orientations like 00, 450, 600 and 900. Experimentally ten beams are casted in which two beams are marked as control beams and in remaining eight beam, every two beams are used for each orientation. The beams are subjected to four-point loading, and the greatest deflections and cracks at the beam center are recorded. The beams are tested for flexural loading and studied different parameters like maximum deflection, maximum load, Initial crack load etc are compared. With an emphasis on RC beams specifically, the goal of this work is to close the current research gap by examining the behavior of fiber reinforced polymer orientation in concrete elements. A beam covered with 50 mm strips at a 45-degree angle produced better results than the remaining beams.\",\"PeriodicalId\":14412,\"journal\":{\"name\":\"International Research Journal of Multidisciplinary Technovation\",\"volume\":\" 407\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Research Journal of Multidisciplinary Technovation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54392/irjmt24315\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Research Journal of Multidisciplinary Technovation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54392/irjmt24315","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Identification of Optimum Retrofitting Approach for Strengthening RC Beams using CFRP Sheets
Recently the formation of disasters like earthquakes, Tsunami, etc., are quite common in all parts of the world. Due to the disasters the existence of loss to property as well as human life is quite common and more to avoid/decrease the damage due to disasters, strengthening a structure is one parameter. Retrofitting is the use of revolutionary technology to reinforce the structural elements to resist the upcoming damage due to disaster. In this paper carbon fiber reinforced polymer strengthening is considered for retrofitting technique. Carbon fiber reinforced polymer sheets of 50 mm width are used and wrapped on the beams with four different orientations like 00, 450, 600 and 900. Experimentally ten beams are casted in which two beams are marked as control beams and in remaining eight beam, every two beams are used for each orientation. The beams are subjected to four-point loading, and the greatest deflections and cracks at the beam center are recorded. The beams are tested for flexural loading and studied different parameters like maximum deflection, maximum load, Initial crack load etc are compared. With an emphasis on RC beams specifically, the goal of this work is to close the current research gap by examining the behavior of fiber reinforced polymer orientation in concrete elements. A beam covered with 50 mm strips at a 45-degree angle produced better results than the remaining beams.