博卡拉山谷现有老式纽瓦里砖砌体建筑的地震脆弱性分析

Krishna Chapagain, Hemchandra Chaulagain
{"title":"博卡拉山谷现有老式纽瓦里砖砌体建筑的地震脆弱性分析","authors":"Krishna Chapagain, Hemchandra Chaulagain","doi":"10.22363/1815-5235-2024-20-2-120-133","DOIUrl":null,"url":null,"abstract":"Most of the building stock in Nepal is based on masonry construction, which includes monumental, administrative, and residential structures. These structures are vulnerable during earthquakes, as evidenced by the massive structural damage, loss of human life, and property damage due to a lack of proper assessment and appropriate strengthening measures. An analysis of the seismic vulnerability of existing old Newari brick masonry buildings in the Pokhara Valley is presented. These buildings were built using indigenous knowledge and technology. The investigation is based on analytical studies, with some material properties obtained from field tests. Proper modeling of a masonry structure is crucial for reliable seismic resistance and structural design. However, modeling a real masonry structure is a challenging and computationally demanding task due to its complicated framework, requiring in-depth knowledge, realistic material properties, and relevant information. The aim of this research is to assess the seismic performance of old Newari masonry buildings using stress level and fragility curves. The research issues are addressed analytically through linear time history analysis using the finite element program-based software Sap 2000 v20. In dynamic analysis, numerical building models were subjected to three synthetic earthquakes. The performance status of the building based on various stress levels is evaluated, and weak regions are identified. The fragility curve of the structure is assessed, considering the ground motion parameters in the locality. The fragility function is plotted with the probability of failure at an interval of 0.10 g. The results of the analysis highlight that the studied structure is vulnerable compared to the codal provisions and standard recommendations.","PeriodicalId":32610,"journal":{"name":"Structural Mechanics of Engineering Constructions and Buildings","volume":" 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Seismic Fragility Analysis of Existing Old Newari Brick Masonry Building in Pokhara Valley\",\"authors\":\"Krishna Chapagain, Hemchandra Chaulagain\",\"doi\":\"10.22363/1815-5235-2024-20-2-120-133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most of the building stock in Nepal is based on masonry construction, which includes monumental, administrative, and residential structures. These structures are vulnerable during earthquakes, as evidenced by the massive structural damage, loss of human life, and property damage due to a lack of proper assessment and appropriate strengthening measures. An analysis of the seismic vulnerability of existing old Newari brick masonry buildings in the Pokhara Valley is presented. These buildings were built using indigenous knowledge and technology. The investigation is based on analytical studies, with some material properties obtained from field tests. Proper modeling of a masonry structure is crucial for reliable seismic resistance and structural design. However, modeling a real masonry structure is a challenging and computationally demanding task due to its complicated framework, requiring in-depth knowledge, realistic material properties, and relevant information. The aim of this research is to assess the seismic performance of old Newari masonry buildings using stress level and fragility curves. The research issues are addressed analytically through linear time history analysis using the finite element program-based software Sap 2000 v20. In dynamic analysis, numerical building models were subjected to three synthetic earthquakes. The performance status of the building based on various stress levels is evaluated, and weak regions are identified. The fragility curve of the structure is assessed, considering the ground motion parameters in the locality. The fragility function is plotted with the probability of failure at an interval of 0.10 g. The results of the analysis highlight that the studied structure is vulnerable compared to the codal provisions and standard recommendations.\",\"PeriodicalId\":32610,\"journal\":{\"name\":\"Structural Mechanics of Engineering Constructions and Buildings\",\"volume\":\" 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structural Mechanics of Engineering Constructions and Buildings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22363/1815-5235-2024-20-2-120-133\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Mechanics of Engineering Constructions and Buildings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22363/1815-5235-2024-20-2-120-133","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

尼泊尔的大部分建筑都是砖石结构,包括纪念性建筑、行政建筑和住宅建筑。由于缺乏正确的评估和适当的加固措施,这些建筑在地震中很容易受到损坏,造成大量的结构破坏、人员伤亡和财产损失。本文分析了博卡拉山谷现有老式纽瓦里砖砌体建筑的抗震脆弱性。这些建筑是利用本地知识和技术建造的。调查以分析研究为基础,并通过现场测试获得了一些材料属性。砌体结构的正确建模对于可靠的抗震和结构设计至关重要。然而,由于真实砌体结构的框架复杂,建模是一项极具挑战性且计算要求极高的任务,需要深入的知识、真实的材料属性和相关信息。本研究的目的是利用应力水平和脆性曲线评估老式纽瓦里砌体建筑的抗震性能。研究问题是通过使用基于有限元程序的软件 Sap 2000 v20 进行线性时间历程分析来解决的。在动态分析中,数值建筑模型经受了三次合成地震。根据不同的应力水平评估了建筑物的性能状况,并确定了薄弱区域。考虑到当地的地面运动参数,对结构的脆性曲线进行了评估。分析结果表明,与规范规定和标准建议相比,所研究的结构是脆弱的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Seismic Fragility Analysis of Existing Old Newari Brick Masonry Building in Pokhara Valley
Most of the building stock in Nepal is based on masonry construction, which includes monumental, administrative, and residential structures. These structures are vulnerable during earthquakes, as evidenced by the massive structural damage, loss of human life, and property damage due to a lack of proper assessment and appropriate strengthening measures. An analysis of the seismic vulnerability of existing old Newari brick masonry buildings in the Pokhara Valley is presented. These buildings were built using indigenous knowledge and technology. The investigation is based on analytical studies, with some material properties obtained from field tests. Proper modeling of a masonry structure is crucial for reliable seismic resistance and structural design. However, modeling a real masonry structure is a challenging and computationally demanding task due to its complicated framework, requiring in-depth knowledge, realistic material properties, and relevant information. The aim of this research is to assess the seismic performance of old Newari masonry buildings using stress level and fragility curves. The research issues are addressed analytically through linear time history analysis using the finite element program-based software Sap 2000 v20. In dynamic analysis, numerical building models were subjected to three synthetic earthquakes. The performance status of the building based on various stress levels is evaluated, and weak regions are identified. The fragility curve of the structure is assessed, considering the ground motion parameters in the locality. The fragility function is plotted with the probability of failure at an interval of 0.10 g. The results of the analysis highlight that the studied structure is vulnerable compared to the codal provisions and standard recommendations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
26
审稿时长
18 weeks
期刊最新文献
Optimal Duration of Observations During Seismic Inspection of Buildings Effect of Sinusoidal Fiber Waviness on Non-Linear Dynamic Performance of Laminated Composite Plates with Variable Fiber Spacing Deformation of Cylindrical Shell Made of 9X2 Steel Under Complex Loading Parameterization of Maxwell - Cremona Diagram for Determining Forces in Elements of a Scissors Truss Geometric Investigation of Three Thin Shells with Ruled Middle Surfaces with the Same Main Frame
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1