{"title":"基于 ARIMA 模型的气候变化预测及其对保险业决策的影响研究","authors":"Haihui Xu, Zhiyuan Ge, Wenjie Ao","doi":"10.54097/3r7nkd35","DOIUrl":null,"url":null,"abstract":"This research delves into the application of the Autoregressive Integrated Moving Average (ARIMA) model for predicting climate change and its subsequent implications for decision-making within the insurance industry. The study introduces a comprehensive approach to forecast climatic variables such as temperature, rainfall, and relative humidity, which are critical factors in assessing insurance risks and formulating underwriting strategies. The ARIMA model, recognized for its efficacy in time series analysis, is employed to capture the seasonal patterns and trends in climatic data. The model is calibrated using historical weather records from two distinct regions, Dali and New York, to account for geographical variability in climate sensitivity. By integrating the model's predictions with economic indicators and industry-specific data, the research constructs a Weather Composite Index (WCI) that quantifies the potential impact of climate change on local economies and insurance claims. The paper meticulously describes the model's parameters, including the order of differencing (d), the number of autoregressive terms (p), and the number of moving average terms (q), which are selected to optimize the model's fit and predictive accuracy. The Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC) are utilized to evaluate and compare the performance of different ARIMA configurations, ensuring that the chosen model minimizes the forecast error and provides the most reliable predictions.","PeriodicalId":504530,"journal":{"name":"Frontiers in Computing and Intelligent Systems","volume":" 34","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on Climate Change Prediction based on ARIMA Model and its Impact on Insurance Industry Decision-Making\",\"authors\":\"Haihui Xu, Zhiyuan Ge, Wenjie Ao\",\"doi\":\"10.54097/3r7nkd35\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research delves into the application of the Autoregressive Integrated Moving Average (ARIMA) model for predicting climate change and its subsequent implications for decision-making within the insurance industry. The study introduces a comprehensive approach to forecast climatic variables such as temperature, rainfall, and relative humidity, which are critical factors in assessing insurance risks and formulating underwriting strategies. The ARIMA model, recognized for its efficacy in time series analysis, is employed to capture the seasonal patterns and trends in climatic data. The model is calibrated using historical weather records from two distinct regions, Dali and New York, to account for geographical variability in climate sensitivity. By integrating the model's predictions with economic indicators and industry-specific data, the research constructs a Weather Composite Index (WCI) that quantifies the potential impact of climate change on local economies and insurance claims. The paper meticulously describes the model's parameters, including the order of differencing (d), the number of autoregressive terms (p), and the number of moving average terms (q), which are selected to optimize the model's fit and predictive accuracy. The Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC) are utilized to evaluate and compare the performance of different ARIMA configurations, ensuring that the chosen model minimizes the forecast error and provides the most reliable predictions.\",\"PeriodicalId\":504530,\"journal\":{\"name\":\"Frontiers in Computing and Intelligent Systems\",\"volume\":\" 34\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Computing and Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54097/3r7nkd35\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Computing and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54097/3r7nkd35","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Research on Climate Change Prediction based on ARIMA Model and its Impact on Insurance Industry Decision-Making
This research delves into the application of the Autoregressive Integrated Moving Average (ARIMA) model for predicting climate change and its subsequent implications for decision-making within the insurance industry. The study introduces a comprehensive approach to forecast climatic variables such as temperature, rainfall, and relative humidity, which are critical factors in assessing insurance risks and formulating underwriting strategies. The ARIMA model, recognized for its efficacy in time series analysis, is employed to capture the seasonal patterns and trends in climatic data. The model is calibrated using historical weather records from two distinct regions, Dali and New York, to account for geographical variability in climate sensitivity. By integrating the model's predictions with economic indicators and industry-specific data, the research constructs a Weather Composite Index (WCI) that quantifies the potential impact of climate change on local economies and insurance claims. The paper meticulously describes the model's parameters, including the order of differencing (d), the number of autoregressive terms (p), and the number of moving average terms (q), which are selected to optimize the model's fit and predictive accuracy. The Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC) are utilized to evaluate and compare the performance of different ARIMA configurations, ensuring that the chosen model minimizes the forecast error and provides the most reliable predictions.