BAFL-SVM:用于智慧农业的区块链辅助联合学习驱动 SVM 框架

IF 3.2 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS High-Confidence Computing Pub Date : 2024-05-23 DOI:10.1016/j.hcc.2024.100243
Ruiyao Shen , Hongliang Zhang , Baobao Chai , Wenyue Wang , Guijuan Wang , Biwei Yan , Jiguo Yu
{"title":"BAFL-SVM:用于智慧农业的区块链辅助联合学习驱动 SVM 框架","authors":"Ruiyao Shen ,&nbsp;Hongliang Zhang ,&nbsp;Baobao Chai ,&nbsp;Wenyue Wang ,&nbsp;Guijuan Wang ,&nbsp;Biwei Yan ,&nbsp;Jiguo Yu","doi":"10.1016/j.hcc.2024.100243","DOIUrl":null,"url":null,"abstract":"<div><div>The combination of blockchain and Internet of Things technology has made significant progress in smart agriculture, which provides substantial support for data sharing and data privacy protection. Nevertheless, achieving efficient interactivity and privacy protection of agricultural data remains a crucial issues. To address the above problems, we propose a blockchain-assisted federated learning-driven support vector machine (BAFL-SVM) framework to realize efficient data sharing and privacy protection. The BAFL-SVM is composed of the FedSVM-RiceCare module and the FedPrivChain module. Specifically, in FedSVM-RiceCare, we utilize federated learning and SVM to train the model, improving the accuracy of the experiment. Then, in FedPrivChain, we adopt homomorphic encryption and a secret-sharing scheme to encrypt the local model parameters and upload them. Finally, we conduct a large number of experiments on a real-world dataset of rice pests and diseases, and the experimental results show that our framework not only guarantees the secure sharing of data but also achieves a higher recognition accuracy compared with other schemes.</div></div>","PeriodicalId":100605,"journal":{"name":"High-Confidence Computing","volume":"5 1","pages":"Article 100243"},"PeriodicalIF":3.2000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"BAFL-SVM: A blockchain-assisted federated learning-driven SVM framework for smart agriculture\",\"authors\":\"Ruiyao Shen ,&nbsp;Hongliang Zhang ,&nbsp;Baobao Chai ,&nbsp;Wenyue Wang ,&nbsp;Guijuan Wang ,&nbsp;Biwei Yan ,&nbsp;Jiguo Yu\",\"doi\":\"10.1016/j.hcc.2024.100243\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The combination of blockchain and Internet of Things technology has made significant progress in smart agriculture, which provides substantial support for data sharing and data privacy protection. Nevertheless, achieving efficient interactivity and privacy protection of agricultural data remains a crucial issues. To address the above problems, we propose a blockchain-assisted federated learning-driven support vector machine (BAFL-SVM) framework to realize efficient data sharing and privacy protection. The BAFL-SVM is composed of the FedSVM-RiceCare module and the FedPrivChain module. Specifically, in FedSVM-RiceCare, we utilize federated learning and SVM to train the model, improving the accuracy of the experiment. Then, in FedPrivChain, we adopt homomorphic encryption and a secret-sharing scheme to encrypt the local model parameters and upload them. Finally, we conduct a large number of experiments on a real-world dataset of rice pests and diseases, and the experimental results show that our framework not only guarantees the secure sharing of data but also achieves a higher recognition accuracy compared with other schemes.</div></div>\",\"PeriodicalId\":100605,\"journal\":{\"name\":\"High-Confidence Computing\",\"volume\":\"5 1\",\"pages\":\"Article 100243\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"High-Confidence Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667295224000461\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"High-Confidence Computing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667295224000461","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
BAFL-SVM: A blockchain-assisted federated learning-driven SVM framework for smart agriculture
The combination of blockchain and Internet of Things technology has made significant progress in smart agriculture, which provides substantial support for data sharing and data privacy protection. Nevertheless, achieving efficient interactivity and privacy protection of agricultural data remains a crucial issues. To address the above problems, we propose a blockchain-assisted federated learning-driven support vector machine (BAFL-SVM) framework to realize efficient data sharing and privacy protection. The BAFL-SVM is composed of the FedSVM-RiceCare module and the FedPrivChain module. Specifically, in FedSVM-RiceCare, we utilize federated learning and SVM to train the model, improving the accuracy of the experiment. Then, in FedPrivChain, we adopt homomorphic encryption and a secret-sharing scheme to encrypt the local model parameters and upload them. Finally, we conduct a large number of experiments on a real-world dataset of rice pests and diseases, and the experimental results show that our framework not only guarantees the secure sharing of data but also achieves a higher recognition accuracy compared with other schemes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.70
自引率
0.00%
发文量
0
期刊最新文献
Erratum to “Exploring Personalized Internet of Things (PIoT), social connectivity, and Artificial Social Intelligence (ASI): A survey” [High-Confidence Computing 4 (2024) 100242] Identity-based threshold (multi) signature with private accountability for privacy-preserving blockchain Navigating the Digital Twin Network landscape: A survey on architecture, applications, privacy and security Erratum to “An effective digital audio watermarking using a deep convolutional neural network with a search location optimization algorithm for improvement in Robustness and Imperceptibility” [High-Confid. Comput. 3 (2023) 100153] A lightweight practical consensus mechanism for supply chain blockchain
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1