peaglet:对颅内皮层和皮层下刺激点进行概率核密度估计的用户友好型工具

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-05-23 DOI:10.1016/j.jneumeth.2024.110177
Andrea Bellacicca , Marco Rossi , Luca Viganò , Luciano Simone , Henrietta Howells , Matteo Gambaretti , Alberto Gallotti , Antonella Leonetti , Guglielmo Puglisi , Francesca Talami , Lorenzo Bello , Cerri Gabriella , Luca Fornia
{"title":"peaglet:对颅内皮层和皮层下刺激点进行概率核密度估计的用户友好型工具","authors":"Andrea Bellacicca ,&nbsp;Marco Rossi ,&nbsp;Luca Viganò ,&nbsp;Luciano Simone ,&nbsp;Henrietta Howells ,&nbsp;Matteo Gambaretti ,&nbsp;Alberto Gallotti ,&nbsp;Antonella Leonetti ,&nbsp;Guglielmo Puglisi ,&nbsp;Francesca Talami ,&nbsp;Lorenzo Bello ,&nbsp;Cerri Gabriella ,&nbsp;Luca Fornia","doi":"10.1016/j.jneumeth.2024.110177","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Data on human brain function obtained with direct electrical stimulation (DES) in neurosurgical patients have been recently integrated and combined with modern neuroimaging techniques, allowing a connectome-based approach fed by intraoperative DES data. Within this framework is crucial to develop reliable methods for spatial localization of DES-derived information to be integrated within the neuroimaging workflow.</p></div><div><h3>New method</h3><p>To this aim, we applied the Kernel Density Estimation for modelling the distribution of DES sites from different patients into the MNI space. The algorithm has been embedded in a MATLAB-based User Interface, <em>Peaglet</em>. It allows an accurate probabilistic weighted and unweighted estimation of DES sites location both at cortical level, by using shortest path calculation along the brain 3D geometric topology, and subcortical level, by using a volume-based approach.</p></div><div><h3>Results</h3><p>We applied <em>Peaglet</em> to investigate spatial estimation of cortical and subcortical stimulation sites provided by recent brain tumour studies. The resulting NIfTI maps have been anatomically investigated with neuroimaging open-source tools.</p></div><div><h3>Comparison with existing methods</h3><p>Peaglet processes differently cortical and subcortical data following their distinguishing geometrical features, increasing anatomical specificity of DES-related results and their reliability within neuroimaging environments.</p></div><div><h3>Conclusions</h3><p><em>Peaglet</em> provides a robust probabilistic estimation of the cortical and subcortical distribution of DES sites going beyond a region of interest approach, respecting cortical and subcortical intrinsic geometrical features. Results can be easily integrated within the neuroimaging workflow to drive connectomic analysis.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0165027024001225/pdfft?md5=ac61476d89b0f99cef01c77a32a87349&pid=1-s2.0-S0165027024001225-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Peaglet: A user-friendly probabilistic Kernel density estimation of intracranial cortical and subcortical stimulation sites\",\"authors\":\"Andrea Bellacicca ,&nbsp;Marco Rossi ,&nbsp;Luca Viganò ,&nbsp;Luciano Simone ,&nbsp;Henrietta Howells ,&nbsp;Matteo Gambaretti ,&nbsp;Alberto Gallotti ,&nbsp;Antonella Leonetti ,&nbsp;Guglielmo Puglisi ,&nbsp;Francesca Talami ,&nbsp;Lorenzo Bello ,&nbsp;Cerri Gabriella ,&nbsp;Luca Fornia\",\"doi\":\"10.1016/j.jneumeth.2024.110177\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>Data on human brain function obtained with direct electrical stimulation (DES) in neurosurgical patients have been recently integrated and combined with modern neuroimaging techniques, allowing a connectome-based approach fed by intraoperative DES data. Within this framework is crucial to develop reliable methods for spatial localization of DES-derived information to be integrated within the neuroimaging workflow.</p></div><div><h3>New method</h3><p>To this aim, we applied the Kernel Density Estimation for modelling the distribution of DES sites from different patients into the MNI space. The algorithm has been embedded in a MATLAB-based User Interface, <em>Peaglet</em>. It allows an accurate probabilistic weighted and unweighted estimation of DES sites location both at cortical level, by using shortest path calculation along the brain 3D geometric topology, and subcortical level, by using a volume-based approach.</p></div><div><h3>Results</h3><p>We applied <em>Peaglet</em> to investigate spatial estimation of cortical and subcortical stimulation sites provided by recent brain tumour studies. The resulting NIfTI maps have been anatomically investigated with neuroimaging open-source tools.</p></div><div><h3>Comparison with existing methods</h3><p>Peaglet processes differently cortical and subcortical data following their distinguishing geometrical features, increasing anatomical specificity of DES-related results and their reliability within neuroimaging environments.</p></div><div><h3>Conclusions</h3><p><em>Peaglet</em> provides a robust probabilistic estimation of the cortical and subcortical distribution of DES sites going beyond a region of interest approach, respecting cortical and subcortical intrinsic geometrical features. Results can be easily integrated within the neuroimaging workflow to drive connectomic analysis.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0165027024001225/pdfft?md5=ac61476d89b0f99cef01c77a32a87349&pid=1-s2.0-S0165027024001225-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0165027024001225\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165027024001225","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

背景通过对神经外科患者进行直接电刺激(DES)获得的人脑功能数据最近已与现代神经影像学技术相结合,实现了以术中 DES 数据为基础的连通组方法。为此,我们应用核密度估计法(Kernel Density Estimation)将不同患者的 DES 位置分布建模到 MNI 空间。该算法已嵌入基于 MATLAB 的用户界面 Peaglet。通过沿大脑三维几何拓扑的最短路径计算,该算法可在皮层水平和皮层下水平准确估算出DES刺激点位置的加权和非加权概率。与现有方法的比较Peaglet根据皮层和皮层下的不同几何特征,对皮层和皮层下数据进行了不同的处理,提高了DES相关结果的解剖特异性和在神经成像环境中的可靠性。结果可轻松集成到神经成像工作流程中,以推动连接组学分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Peaglet: A user-friendly probabilistic Kernel density estimation of intracranial cortical and subcortical stimulation sites

Background

Data on human brain function obtained with direct electrical stimulation (DES) in neurosurgical patients have been recently integrated and combined with modern neuroimaging techniques, allowing a connectome-based approach fed by intraoperative DES data. Within this framework is crucial to develop reliable methods for spatial localization of DES-derived information to be integrated within the neuroimaging workflow.

New method

To this aim, we applied the Kernel Density Estimation for modelling the distribution of DES sites from different patients into the MNI space. The algorithm has been embedded in a MATLAB-based User Interface, Peaglet. It allows an accurate probabilistic weighted and unweighted estimation of DES sites location both at cortical level, by using shortest path calculation along the brain 3D geometric topology, and subcortical level, by using a volume-based approach.

Results

We applied Peaglet to investigate spatial estimation of cortical and subcortical stimulation sites provided by recent brain tumour studies. The resulting NIfTI maps have been anatomically investigated with neuroimaging open-source tools.

Comparison with existing methods

Peaglet processes differently cortical and subcortical data following their distinguishing geometrical features, increasing anatomical specificity of DES-related results and their reliability within neuroimaging environments.

Conclusions

Peaglet provides a robust probabilistic estimation of the cortical and subcortical distribution of DES sites going beyond a region of interest approach, respecting cortical and subcortical intrinsic geometrical features. Results can be easily integrated within the neuroimaging workflow to drive connectomic analysis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1