{"title":"均衡的 ID-OOD 权衡转移使基于查询的检测器成为少数几个镜头的学习器","authors":"Yuantao Yin, Ping Yin, Xue Xiao, Liang Yan, Siqing Sun, Xiaobo An","doi":"10.1016/j.hcc.2024.100237","DOIUrl":null,"url":null,"abstract":"<div><div>Fine-tuning is a popular approach to solve the few-shot object detection problem. In this paper, we attempt to introduce a new perspective on it. We formulate the few-shot novel tasks as a type of distribution shifted from its ground-truth distribution. We introduce the concept of imaginary placeholder masks to show that this distribution shift is essentially a composite of in-distribution (ID) and out-of-distribution(OOD) shifts. Our empirical investigation results show that it is significant to balance the trade-off between adapting to the available few-shot distribution and keeping the distribution-shift robustness of the pre-trained model. We explore improvements in the few-shot fine-tuning transfer in the few-shot object detection (FSOD) settings from three aspects. First, we explore the LinearProbe-Finetuning (LP-FT) technique to balance this trade-off to mitigate the feature distortion problem. Second, we explore the effectiveness of utilizing the protection freezing strategy for query-based object detectors to keep their OOD robustness. Third, we try to utilize ensembling methods to circumvent the feature distortion. All these techniques are integrated into a whole method called BIOT (<strong>B</strong>alanced <strong>I</strong>D-<strong>O</strong>OD <strong>T</strong>ransfer). Evaluation results show that our method is simple yet effective and general to tap the FSOD potential of query-based object detectors. It outperforms the current SOTA method in many FSOD settings and has a promising scaling capability.</div></div>","PeriodicalId":100605,"journal":{"name":"High-Confidence Computing","volume":"5 1","pages":"Article 100237"},"PeriodicalIF":3.2000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Balanced ID-OOD tradeoff transfer makes query based detectors good few shot learners\",\"authors\":\"Yuantao Yin, Ping Yin, Xue Xiao, Liang Yan, Siqing Sun, Xiaobo An\",\"doi\":\"10.1016/j.hcc.2024.100237\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Fine-tuning is a popular approach to solve the few-shot object detection problem. In this paper, we attempt to introduce a new perspective on it. We formulate the few-shot novel tasks as a type of distribution shifted from its ground-truth distribution. We introduce the concept of imaginary placeholder masks to show that this distribution shift is essentially a composite of in-distribution (ID) and out-of-distribution(OOD) shifts. Our empirical investigation results show that it is significant to balance the trade-off between adapting to the available few-shot distribution and keeping the distribution-shift robustness of the pre-trained model. We explore improvements in the few-shot fine-tuning transfer in the few-shot object detection (FSOD) settings from three aspects. First, we explore the LinearProbe-Finetuning (LP-FT) technique to balance this trade-off to mitigate the feature distortion problem. Second, we explore the effectiveness of utilizing the protection freezing strategy for query-based object detectors to keep their OOD robustness. Third, we try to utilize ensembling methods to circumvent the feature distortion. All these techniques are integrated into a whole method called BIOT (<strong>B</strong>alanced <strong>I</strong>D-<strong>O</strong>OD <strong>T</strong>ransfer). Evaluation results show that our method is simple yet effective and general to tap the FSOD potential of query-based object detectors. It outperforms the current SOTA method in many FSOD settings and has a promising scaling capability.</div></div>\",\"PeriodicalId\":100605,\"journal\":{\"name\":\"High-Confidence Computing\",\"volume\":\"5 1\",\"pages\":\"Article 100237\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"High-Confidence Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667295224000400\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"High-Confidence Computing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667295224000400","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Balanced ID-OOD tradeoff transfer makes query based detectors good few shot learners
Fine-tuning is a popular approach to solve the few-shot object detection problem. In this paper, we attempt to introduce a new perspective on it. We formulate the few-shot novel tasks as a type of distribution shifted from its ground-truth distribution. We introduce the concept of imaginary placeholder masks to show that this distribution shift is essentially a composite of in-distribution (ID) and out-of-distribution(OOD) shifts. Our empirical investigation results show that it is significant to balance the trade-off between adapting to the available few-shot distribution and keeping the distribution-shift robustness of the pre-trained model. We explore improvements in the few-shot fine-tuning transfer in the few-shot object detection (FSOD) settings from three aspects. First, we explore the LinearProbe-Finetuning (LP-FT) technique to balance this trade-off to mitigate the feature distortion problem. Second, we explore the effectiveness of utilizing the protection freezing strategy for query-based object detectors to keep their OOD robustness. Third, we try to utilize ensembling methods to circumvent the feature distortion. All these techniques are integrated into a whole method called BIOT (Balanced ID-OOD Transfer). Evaluation results show that our method is simple yet effective and general to tap the FSOD potential of query-based object detectors. It outperforms the current SOTA method in many FSOD settings and has a promising scaling capability.