用于逆转肿瘤抗药性的尺寸可收缩树枝状聚合物-脂质混合纳米组件

IF 9.1 Q1 ENGINEERING, CHEMICAL Green Chemical Engineering Pub Date : 2024-05-18 DOI:10.1016/j.gce.2024.05.001
Xuanrong Sun , Tenghan Zhang , Zhao Lou , Yujie Zhou , Yuteng Chu , Dongfang Zhou , Juhong Zhu , Yue Cai , Jie Shen
{"title":"用于逆转肿瘤抗药性的尺寸可收缩树枝状聚合物-脂质混合纳米组件","authors":"Xuanrong Sun ,&nbsp;Tenghan Zhang ,&nbsp;Zhao Lou ,&nbsp;Yujie Zhou ,&nbsp;Yuteng Chu ,&nbsp;Dongfang Zhou ,&nbsp;Juhong Zhu ,&nbsp;Yue Cai ,&nbsp;Jie Shen","doi":"10.1016/j.gce.2024.05.001","DOIUrl":null,"url":null,"abstract":"<div><div>Drug resistance is a major obstacle in tumor therapy. One effective approach to overcoming this issue is by improving the penetration of drugs into the lesions. Here, we report size shrinkable dendrimer-lipid hybrid nanoassemblies (PATU-lipid-PEG/DOX). The PATU-lipid-PEG/DOX have initial sizes of ∼92 nm, which are ideal for blood circulation and tumor vascular penetration. Once PATU-lipid-PEG/DOX at tumor sites, they will disassemble and release small dendrimers (∼3 nm) to realize deep tumor penetration. As a result, Doxorubicin (DOX) can be delivered intracellularly, thereby reversing tumor multidrug resistance. The efficacy of PATU-lipid-PEG/DOX was validated in drug-resistant tumor mice. This study provides a versatile drug delivery platform to address the challenges of tumor drug resistance.</div></div>","PeriodicalId":66474,"journal":{"name":"Green Chemical Engineering","volume":"6 1","pages":"Pages 116-125"},"PeriodicalIF":9.1000,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A size shrinkable dendrimer-lipid hybrid nanoassembly for reversing tumor drug resistance\",\"authors\":\"Xuanrong Sun ,&nbsp;Tenghan Zhang ,&nbsp;Zhao Lou ,&nbsp;Yujie Zhou ,&nbsp;Yuteng Chu ,&nbsp;Dongfang Zhou ,&nbsp;Juhong Zhu ,&nbsp;Yue Cai ,&nbsp;Jie Shen\",\"doi\":\"10.1016/j.gce.2024.05.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Drug resistance is a major obstacle in tumor therapy. One effective approach to overcoming this issue is by improving the penetration of drugs into the lesions. Here, we report size shrinkable dendrimer-lipid hybrid nanoassemblies (PATU-lipid-PEG/DOX). The PATU-lipid-PEG/DOX have initial sizes of ∼92 nm, which are ideal for blood circulation and tumor vascular penetration. Once PATU-lipid-PEG/DOX at tumor sites, they will disassemble and release small dendrimers (∼3 nm) to realize deep tumor penetration. As a result, Doxorubicin (DOX) can be delivered intracellularly, thereby reversing tumor multidrug resistance. The efficacy of PATU-lipid-PEG/DOX was validated in drug-resistant tumor mice. This study provides a versatile drug delivery platform to address the challenges of tumor drug resistance.</div></div>\",\"PeriodicalId\":66474,\"journal\":{\"name\":\"Green Chemical Engineering\",\"volume\":\"6 1\",\"pages\":\"Pages 116-125\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2024-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Green Chemical Engineering\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666952824000359\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Chemical Engineering","FirstCategoryId":"1089","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666952824000359","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

抗药性是肿瘤治疗的一大障碍。克服这一问题的有效方法之一是提高药物对病灶的穿透力。在此,我们报告了尺寸可收缩的树枝状聚合物-脂质混合纳米组合物(PATU-lipid-PEG/DOX)。PATU-lipid-PEG/DOX 的初始尺寸为 92 纳米,非常适合血液循环和肿瘤血管穿透。一旦 PATU-lipid-PEG/DOX 到达肿瘤部位,它们就会分解并释放出小树枝状分子(∼3 nm),从而实现肿瘤的深层穿透。因此,多柔比星(DOX)可在细胞内递送,从而逆转肿瘤的多药耐药性。PATU-脂质-PEG/DOX在耐药肿瘤小鼠中的疗效得到了验证。这项研究为应对肿瘤耐药性的挑战提供了一个多功能的给药平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A size shrinkable dendrimer-lipid hybrid nanoassembly for reversing tumor drug resistance
Drug resistance is a major obstacle in tumor therapy. One effective approach to overcoming this issue is by improving the penetration of drugs into the lesions. Here, we report size shrinkable dendrimer-lipid hybrid nanoassemblies (PATU-lipid-PEG/DOX). The PATU-lipid-PEG/DOX have initial sizes of ∼92 nm, which are ideal for blood circulation and tumor vascular penetration. Once PATU-lipid-PEG/DOX at tumor sites, they will disassemble and release small dendrimers (∼3 nm) to realize deep tumor penetration. As a result, Doxorubicin (DOX) can be delivered intracellularly, thereby reversing tumor multidrug resistance. The efficacy of PATU-lipid-PEG/DOX was validated in drug-resistant tumor mice. This study provides a versatile drug delivery platform to address the challenges of tumor drug resistance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Green Chemical Engineering
Green Chemical Engineering Process Chemistry and Technology, Catalysis, Filtration and Separation
CiteScore
11.60
自引率
0.00%
发文量
58
审稿时长
51 days
期刊最新文献
Outside Back Cover OFC: Outside Front Cover OFC: Outside Front Cover Outside Back Cover Outside Back Cover
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1