使用钴铬钼合金植入体改善骨质疏松兔子的骨质

Q1 Medicine Engineered regeneration Pub Date : 2024-12-01 DOI:10.1016/j.engreg.2024.05.002
Jésica I. Zuchuat , Adriana S. Manzano , Valeria Sigot , Gastón L. Miño , Oscar A. Decco
{"title":"使用钴铬钼合金植入体改善骨质疏松兔子的骨质","authors":"Jésica I. Zuchuat ,&nbsp;Adriana S. Manzano ,&nbsp;Valeria Sigot ,&nbsp;Gastón L. Miño ,&nbsp;Oscar A. Decco","doi":"10.1016/j.engreg.2024.05.002","DOIUrl":null,"url":null,"abstract":"<div><div>The management of bone repair in patients with osteoporosis depends on the clinical situation and the extent of the damage. The repair of bone lesions by inducing new bone formation is important for maintaining bone architecture and density. Herein, we reported the use of Cobalt Chromium Molybdenum (CoCrMo) implants in osteoporotic rabbits and the regenerative outcomes <em>in vivo</em>. The aim was to determine whether the placement of CoCrMo plates would induce qualitative and quantitative differences in the osteoporotic tissue beneath and surrounding the implant. We assessed the effect of the alloy in the bone of animals receiving implants for 4 and 8 weeks and compared the results to those of the osteoporotic non-implanted bone and the healthy controls. After 4 weeks, minimal histological changes were observed, whereas after 8 weeks a marked osteogenesis was evident with both apposition and substitution of new bone. In addition, a greater number of Haversian canals with increased canal area and decreased intracortical pores were observed in the implanted <em>vs</em> non implanted limb for both experimental groups. We show for the first time that the use of CrCoMo plates induces bone formation under osteoporotic conditions. The beneficial effect is localised on the cortical bone in areas in contact with the material. Although this effect may not directly influence the OP disease itself, it has direct implications for new bone formation adjacent to the biomaterial. This potential enhancement could play a crucial role in improving implant fixation in compromised bone, offering increased biocompatibility and stability.</div></div>","PeriodicalId":72919,"journal":{"name":"Engineered regeneration","volume":"5 4","pages":"Pages 495-504"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bone improvement in osteoporotic rabbits using CoCrMo implants\",\"authors\":\"Jésica I. Zuchuat ,&nbsp;Adriana S. Manzano ,&nbsp;Valeria Sigot ,&nbsp;Gastón L. Miño ,&nbsp;Oscar A. Decco\",\"doi\":\"10.1016/j.engreg.2024.05.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The management of bone repair in patients with osteoporosis depends on the clinical situation and the extent of the damage. The repair of bone lesions by inducing new bone formation is important for maintaining bone architecture and density. Herein, we reported the use of Cobalt Chromium Molybdenum (CoCrMo) implants in osteoporotic rabbits and the regenerative outcomes <em>in vivo</em>. The aim was to determine whether the placement of CoCrMo plates would induce qualitative and quantitative differences in the osteoporotic tissue beneath and surrounding the implant. We assessed the effect of the alloy in the bone of animals receiving implants for 4 and 8 weeks and compared the results to those of the osteoporotic non-implanted bone and the healthy controls. After 4 weeks, minimal histological changes were observed, whereas after 8 weeks a marked osteogenesis was evident with both apposition and substitution of new bone. In addition, a greater number of Haversian canals with increased canal area and decreased intracortical pores were observed in the implanted <em>vs</em> non implanted limb for both experimental groups. We show for the first time that the use of CrCoMo plates induces bone formation under osteoporotic conditions. The beneficial effect is localised on the cortical bone in areas in contact with the material. Although this effect may not directly influence the OP disease itself, it has direct implications for new bone formation adjacent to the biomaterial. This potential enhancement could play a crucial role in improving implant fixation in compromised bone, offering increased biocompatibility and stability.</div></div>\",\"PeriodicalId\":72919,\"journal\":{\"name\":\"Engineered regeneration\",\"volume\":\"5 4\",\"pages\":\"Pages 495-504\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineered regeneration\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666138124000264\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineered regeneration","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666138124000264","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bone improvement in osteoporotic rabbits using CoCrMo implants
The management of bone repair in patients with osteoporosis depends on the clinical situation and the extent of the damage. The repair of bone lesions by inducing new bone formation is important for maintaining bone architecture and density. Herein, we reported the use of Cobalt Chromium Molybdenum (CoCrMo) implants in osteoporotic rabbits and the regenerative outcomes in vivo. The aim was to determine whether the placement of CoCrMo plates would induce qualitative and quantitative differences in the osteoporotic tissue beneath and surrounding the implant. We assessed the effect of the alloy in the bone of animals receiving implants for 4 and 8 weeks and compared the results to those of the osteoporotic non-implanted bone and the healthy controls. After 4 weeks, minimal histological changes were observed, whereas after 8 weeks a marked osteogenesis was evident with both apposition and substitution of new bone. In addition, a greater number of Haversian canals with increased canal area and decreased intracortical pores were observed in the implanted vs non implanted limb for both experimental groups. We show for the first time that the use of CrCoMo plates induces bone formation under osteoporotic conditions. The beneficial effect is localised on the cortical bone in areas in contact with the material. Although this effect may not directly influence the OP disease itself, it has direct implications for new bone formation adjacent to the biomaterial. This potential enhancement could play a crucial role in improving implant fixation in compromised bone, offering increased biocompatibility and stability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Engineered regeneration
Engineered regeneration Biomaterials, Medicine and Dentistry (General), Biotechnology, Biomedical Engineering
CiteScore
22.90
自引率
0.00%
发文量
0
审稿时长
33 days
期刊最新文献
Asymmetric porous composite hydrogel patch for microenvironment-adapted repair of contaminated abdominal wall defects Novel injectable composite incorporating denosumab promotes bone regeneration via bone homeostasis regulation Bone improvement in osteoporotic rabbits using CoCrMo implants Polyphenol-based photothermal nanoparticles with sprayable capability for self-regulation of microenvironment to accelerate diabetic wound healing Corrigendum to “The Artificial Disc Nucleus and Other Strategies for Replacement of the Nucleus Pulposus: Past, Present and Future Designs for an Emerging Surgical Solution” [Engineered Regeneration 5(2024), 269-281]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1