{"title":"一种新型页岩气藏--富碳酸盐页岩:从实验室力学表征到油田开采战略","authors":"","doi":"10.1016/j.petsci.2024.05.018","DOIUrl":null,"url":null,"abstract":"<div><div>Recently, a new promising type of marine shale gas reservoir, carbonate-rich shale, has been discovered. But the mechanical properties of this type of shale were still unrevealed and the corresponding reservoir stimulation design was lack of guidance. Using the deep downhole cores of an exploratory carbonate-rich shale gas well, the physical and mechanical parameters and failure mechanism of the whole reservoir section were acquired and evaluated systematically, by performing XRD, tri-axial compression, Brazilian splitting, and fracture toughness tests. A new model was established to evaluate the reservoir brittleness based on fracture morphology and stress-strain curve. Recommended strategy for reservoir stimulation was discussed. Results showed that (1) Carbonate-rich shale possessed high compressive strength and high Young's modulus, which were improved by 10.74% and 3.37% compared to that of siliceous shale. It featured high tensile strength and fracture toughness, with insignificant anisotropy. (2) With the content of carbonate minerals increasing, the shear failure morphology transformed from sparse and wide brittle fractures to diffusely distributed and subtle plastic cracks. (3) The brittleness index order was: siliceous shale, clay-rich shale, carbonate-rich shale, and limestone. (4) The special properties of carbonate-rich shale were rooted in the inherent feature of carbonate minerals (high strength, high elastic modulus, and cleavage structure), resulting in greater challenge in reservoirs stimulation. The above findings would promote the understanding of carbonate-rich shale reservoirs and provide reference for the optimum design of reservoir stimulation.</div></div>","PeriodicalId":19938,"journal":{"name":"Petroleum Science","volume":null,"pages":null},"PeriodicalIF":6.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new type of shale gas reservoir—carbonate-rich shale: From laboratory mechanical characterization to field stimulation strategy\",\"authors\":\"\",\"doi\":\"10.1016/j.petsci.2024.05.018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Recently, a new promising type of marine shale gas reservoir, carbonate-rich shale, has been discovered. But the mechanical properties of this type of shale were still unrevealed and the corresponding reservoir stimulation design was lack of guidance. Using the deep downhole cores of an exploratory carbonate-rich shale gas well, the physical and mechanical parameters and failure mechanism of the whole reservoir section were acquired and evaluated systematically, by performing XRD, tri-axial compression, Brazilian splitting, and fracture toughness tests. A new model was established to evaluate the reservoir brittleness based on fracture morphology and stress-strain curve. Recommended strategy for reservoir stimulation was discussed. Results showed that (1) Carbonate-rich shale possessed high compressive strength and high Young's modulus, which were improved by 10.74% and 3.37% compared to that of siliceous shale. It featured high tensile strength and fracture toughness, with insignificant anisotropy. (2) With the content of carbonate minerals increasing, the shear failure morphology transformed from sparse and wide brittle fractures to diffusely distributed and subtle plastic cracks. (3) The brittleness index order was: siliceous shale, clay-rich shale, carbonate-rich shale, and limestone. (4) The special properties of carbonate-rich shale were rooted in the inherent feature of carbonate minerals (high strength, high elastic modulus, and cleavage structure), resulting in greater challenge in reservoirs stimulation. The above findings would promote the understanding of carbonate-rich shale reservoirs and provide reference for the optimum design of reservoir stimulation.</div></div>\",\"PeriodicalId\":19938,\"journal\":{\"name\":\"Petroleum Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Petroleum Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1995822624001353\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petroleum Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1995822624001353","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
A new type of shale gas reservoir—carbonate-rich shale: From laboratory mechanical characterization to field stimulation strategy
Recently, a new promising type of marine shale gas reservoir, carbonate-rich shale, has been discovered. But the mechanical properties of this type of shale were still unrevealed and the corresponding reservoir stimulation design was lack of guidance. Using the deep downhole cores of an exploratory carbonate-rich shale gas well, the physical and mechanical parameters and failure mechanism of the whole reservoir section were acquired and evaluated systematically, by performing XRD, tri-axial compression, Brazilian splitting, and fracture toughness tests. A new model was established to evaluate the reservoir brittleness based on fracture morphology and stress-strain curve. Recommended strategy for reservoir stimulation was discussed. Results showed that (1) Carbonate-rich shale possessed high compressive strength and high Young's modulus, which were improved by 10.74% and 3.37% compared to that of siliceous shale. It featured high tensile strength and fracture toughness, with insignificant anisotropy. (2) With the content of carbonate minerals increasing, the shear failure morphology transformed from sparse and wide brittle fractures to diffusely distributed and subtle plastic cracks. (3) The brittleness index order was: siliceous shale, clay-rich shale, carbonate-rich shale, and limestone. (4) The special properties of carbonate-rich shale were rooted in the inherent feature of carbonate minerals (high strength, high elastic modulus, and cleavage structure), resulting in greater challenge in reservoirs stimulation. The above findings would promote the understanding of carbonate-rich shale reservoirs and provide reference for the optimum design of reservoir stimulation.
期刊介绍:
Petroleum Science is the only English journal in China on petroleum science and technology that is intended for professionals engaged in petroleum science research and technical applications all over the world, as well as the managerial personnel of oil companies. It covers petroleum geology, petroleum geophysics, petroleum engineering, petrochemistry & chemical engineering, petroleum mechanics, and economic management. It aims to introduce the latest results in oil industry research in China, promote cooperation in petroleum science research between China and the rest of the world, and build a bridge for scientific communication between China and the world.