{"title":"工艺参数对机械研磨合成的纳米晶 CoNiCrAlY 粉末流动性的影响","authors":"Annadaa Shankara Dash , Indranil Manna , Deepa Devapal , Sharad Chandra Sharma , Jyotsna Dutta Majumdar","doi":"10.1016/j.partic.2024.05.006","DOIUrl":null,"url":null,"abstract":"<div><p>The present study concerns understanding the effect of process parameters on the characteristics and flowability of nanocrystalline CoNiCrAlY powder synthesized by mechanical milling. Mechanical milling has been conducted in a planetary ball mill with tungsten carbide (WC) ball, with ball to powder ratio of 10:1 at 300 rpm speed, using 1% stearic acid and toluene as process control agent (PCA) with time varying from 10 h to 36 h. The synthesized nanocrystalline powder were characterized by Scanning Electron Microscopy, X-ray Diffraction technique, X-ray Photoelectron Spectroscopy, and Differential Scanning Calorimetry. Subsequently, flowability in terms of Hausner ratio was assessed by Tap Density Tester. Average particle size of the powder was found to decrease from 33 μm to 22 μm after 10 h of milling and further increases to 43 μm and 38 μm after 25 and 36 h of milling, respectively, in stearic acid medium. However, in toluene medium particle size continuously decreases from 33 μm to 9.7 μm with increasing milling time. The particle morphology changes from spherical to platelet shape at low milling hours in both of the media. After 25 h of milling, the shape of the particles is nearly spherical for stearic acid and irregular for toluene used as a PCA. Crystallize size was found to decrease with increasing milling time from 147 nm to 7.7 nm and to 6.4 nm in stearic acid and toluene media, respectively. There was presence of γ, γʹ, β, hcp-Co, Al<sub>2</sub>O<sub>3</sub> and AlOOH phases on the powder particles milled in both the medium. The measured Hausner ratio of the powders was found to vary from 1.18 to 1.32 in stearic acid medium, and was found to increase with increasing milling time. On the other hand, in toluene media flowability decreases (Hausner ratio increases from 1.33 to 1.44) with increasing milling time.</p></div>","PeriodicalId":401,"journal":{"name":"Particuology","volume":"92 ","pages":"Pages 210-223"},"PeriodicalIF":4.1000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of process parameter on the flowability of nanocrystalline CoNiCrAlY powder synthesized by mechanical milling\",\"authors\":\"Annadaa Shankara Dash , Indranil Manna , Deepa Devapal , Sharad Chandra Sharma , Jyotsna Dutta Majumdar\",\"doi\":\"10.1016/j.partic.2024.05.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The present study concerns understanding the effect of process parameters on the characteristics and flowability of nanocrystalline CoNiCrAlY powder synthesized by mechanical milling. Mechanical milling has been conducted in a planetary ball mill with tungsten carbide (WC) ball, with ball to powder ratio of 10:1 at 300 rpm speed, using 1% stearic acid and toluene as process control agent (PCA) with time varying from 10 h to 36 h. The synthesized nanocrystalline powder were characterized by Scanning Electron Microscopy, X-ray Diffraction technique, X-ray Photoelectron Spectroscopy, and Differential Scanning Calorimetry. Subsequently, flowability in terms of Hausner ratio was assessed by Tap Density Tester. Average particle size of the powder was found to decrease from 33 μm to 22 μm after 10 h of milling and further increases to 43 μm and 38 μm after 25 and 36 h of milling, respectively, in stearic acid medium. However, in toluene medium particle size continuously decreases from 33 μm to 9.7 μm with increasing milling time. The particle morphology changes from spherical to platelet shape at low milling hours in both of the media. After 25 h of milling, the shape of the particles is nearly spherical for stearic acid and irregular for toluene used as a PCA. Crystallize size was found to decrease with increasing milling time from 147 nm to 7.7 nm and to 6.4 nm in stearic acid and toluene media, respectively. There was presence of γ, γʹ, β, hcp-Co, Al<sub>2</sub>O<sub>3</sub> and AlOOH phases on the powder particles milled in both the medium. The measured Hausner ratio of the powders was found to vary from 1.18 to 1.32 in stearic acid medium, and was found to increase with increasing milling time. On the other hand, in toluene media flowability decreases (Hausner ratio increases from 1.33 to 1.44) with increasing milling time.</p></div>\",\"PeriodicalId\":401,\"journal\":{\"name\":\"Particuology\",\"volume\":\"92 \",\"pages\":\"Pages 210-223\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Particuology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1674200124000828\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Particuology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674200124000828","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Effect of process parameter on the flowability of nanocrystalline CoNiCrAlY powder synthesized by mechanical milling
The present study concerns understanding the effect of process parameters on the characteristics and flowability of nanocrystalline CoNiCrAlY powder synthesized by mechanical milling. Mechanical milling has been conducted in a planetary ball mill with tungsten carbide (WC) ball, with ball to powder ratio of 10:1 at 300 rpm speed, using 1% stearic acid and toluene as process control agent (PCA) with time varying from 10 h to 36 h. The synthesized nanocrystalline powder were characterized by Scanning Electron Microscopy, X-ray Diffraction technique, X-ray Photoelectron Spectroscopy, and Differential Scanning Calorimetry. Subsequently, flowability in terms of Hausner ratio was assessed by Tap Density Tester. Average particle size of the powder was found to decrease from 33 μm to 22 μm after 10 h of milling and further increases to 43 μm and 38 μm after 25 and 36 h of milling, respectively, in stearic acid medium. However, in toluene medium particle size continuously decreases from 33 μm to 9.7 μm with increasing milling time. The particle morphology changes from spherical to platelet shape at low milling hours in both of the media. After 25 h of milling, the shape of the particles is nearly spherical for stearic acid and irregular for toluene used as a PCA. Crystallize size was found to decrease with increasing milling time from 147 nm to 7.7 nm and to 6.4 nm in stearic acid and toluene media, respectively. There was presence of γ, γʹ, β, hcp-Co, Al2O3 and AlOOH phases on the powder particles milled in both the medium. The measured Hausner ratio of the powders was found to vary from 1.18 to 1.32 in stearic acid medium, and was found to increase with increasing milling time. On the other hand, in toluene media flowability decreases (Hausner ratio increases from 1.33 to 1.44) with increasing milling time.
期刊介绍:
The word ‘particuology’ was coined to parallel the discipline for the science and technology of particles.
Particuology is an interdisciplinary journal that publishes frontier research articles and critical reviews on the discovery, formulation and engineering of particulate materials, processes and systems. It especially welcomes contributions utilising advanced theoretical, modelling and measurement methods to enable the discovery and creation of new particulate materials, and the manufacturing of functional particulate-based products, such as sensors.
Papers are handled by Thematic Editors who oversee contributions from specific subject fields. These fields are classified into: Particle Synthesis and Modification; Particle Characterization and Measurement; Granular Systems and Bulk Solids Technology; Fluidization and Particle-Fluid Systems; Aerosols; and Applications of Particle Technology.
Key topics concerning the creation and processing of particulates include:
-Modelling and simulation of particle formation, collective behaviour of particles and systems for particle production over a broad spectrum of length scales
-Mining of experimental data for particle synthesis and surface properties to facilitate the creation of new materials and processes
-Particle design and preparation including controlled response and sensing functionalities in formation, delivery systems and biological systems, etc.
-Experimental and computational methods for visualization and analysis of particulate system.
These topics are broadly relevant to the production of materials, pharmaceuticals and food, and to the conversion of energy resources to fuels and protection of the environment.