{"title":"硅晶片搬运机器人姿态振动的前馈补偿","authors":"","doi":"10.1016/j.cirp.2024.04.081","DOIUrl":null,"url":null,"abstract":"<div><p>Frog-legged robots are commonly used for silicon wafer handling in semiconductor manufacturing. However, their precision, speed and versatility are limited by vibration which varies with their position in the workspace. This paper proposes a methodology for modelling the pose-dependent vibration of a frog-legged robot as a function of its changing inertia, and its experimentally-identified joint stiffness and damping. The model is used to design a feedforward tracking controller for compensating the pose-dependent vibration of the robot. In experiments, the proposed method yields 65–73% reduction in RMS tracking error compared to a baseline controller designed for specific poses of the robot.</p></div>","PeriodicalId":55256,"journal":{"name":"Cirp Annals-Manufacturing Technology","volume":"73 1","pages":"Pages 321-324"},"PeriodicalIF":3.2000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Feedforward compensation of the pose-dependent vibration of a silicon wafer handling robot\",\"authors\":\"\",\"doi\":\"10.1016/j.cirp.2024.04.081\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Frog-legged robots are commonly used for silicon wafer handling in semiconductor manufacturing. However, their precision, speed and versatility are limited by vibration which varies with their position in the workspace. This paper proposes a methodology for modelling the pose-dependent vibration of a frog-legged robot as a function of its changing inertia, and its experimentally-identified joint stiffness and damping. The model is used to design a feedforward tracking controller for compensating the pose-dependent vibration of the robot. In experiments, the proposed method yields 65–73% reduction in RMS tracking error compared to a baseline controller designed for specific poses of the robot.</p></div>\",\"PeriodicalId\":55256,\"journal\":{\"name\":\"Cirp Annals-Manufacturing Technology\",\"volume\":\"73 1\",\"pages\":\"Pages 321-324\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cirp Annals-Manufacturing Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0007850624000957\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cirp Annals-Manufacturing Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0007850624000957","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
Feedforward compensation of the pose-dependent vibration of a silicon wafer handling robot
Frog-legged robots are commonly used for silicon wafer handling in semiconductor manufacturing. However, their precision, speed and versatility are limited by vibration which varies with their position in the workspace. This paper proposes a methodology for modelling the pose-dependent vibration of a frog-legged robot as a function of its changing inertia, and its experimentally-identified joint stiffness and damping. The model is used to design a feedforward tracking controller for compensating the pose-dependent vibration of the robot. In experiments, the proposed method yields 65–73% reduction in RMS tracking error compared to a baseline controller designed for specific poses of the robot.
期刊介绍:
CIRP, The International Academy for Production Engineering, was founded in 1951 to promote, by scientific research, the development of all aspects of manufacturing technology covering the optimization, control and management of processes, machines and systems.
This biannual ISI cited journal contains approximately 140 refereed technical and keynote papers. Subject areas covered include:
Assembly, Cutting, Design, Electro-Physical and Chemical Processes, Forming, Abrasive processes, Surfaces, Machines, Production Systems and Organizations, Precision Engineering and Metrology, Life-Cycle Engineering, Microsystems Technology (MST), Nanotechnology.