{"title":"勇气对拖延症产生影响的神经基础:自我调节与动机神经通路之间的相互作用","authors":"Youling Bai , Biying Zhang , Tingyong Feng","doi":"10.1016/j.pnpbp.2024.111037","DOIUrl":null,"url":null,"abstract":"<div><p>Procrastination has a detrimental impact on academic performance, health, and subjective well-being. Previous studies indicated that grit was negatively related to procrastination. However, the underlying neural basis of this relationship remains unclear. To address this issue, we utilized voxel-based morphometry (VBM) and resting-state functional connectivity (RSFC) analysis to identify the neural substrates of how is grit linked to procrastination. Behavioral results showed that procrastination was negatively associated with grit. VBM analysis revealed that gray matter volume (GMV) in the left precuneus was positively associated with the <em>consistency of interest</em> (CI), a subcomponent of grit, while the right medial orbital frontal cortex (mOFC) was positively correlated with the <em>perseverance of effort</em> (PE), another subcomponent of grit. Moreover, the RSFC analysis indicated that both precuneus-medial superior frontal gyrus (mSFG) and precuneus-insula connectivity were positively related to CI, while the functional coupling of right mOFC with left anterior cingulate cortex (ACC) was positively related to PE. Importantly, the structural equation modeling (SEM) results were well suited for the influence of grit on procrastination via both self-regulation (mOFC-ACC) and motivation pathways (precuneus-mSFG, precuneus-insula). Together, these findings imply that self-regulation and motivation could be two neural circuits underlying the impact of grit on procrastination.</p></div>","PeriodicalId":54549,"journal":{"name":"Progress in Neuro-Psychopharmacology & Biological Psychiatry","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neural basis responsible for effect of grit on procrastination: The interaction between the self-regulation and motivation neural pathways\",\"authors\":\"Youling Bai , Biying Zhang , Tingyong Feng\",\"doi\":\"10.1016/j.pnpbp.2024.111037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Procrastination has a detrimental impact on academic performance, health, and subjective well-being. Previous studies indicated that grit was negatively related to procrastination. However, the underlying neural basis of this relationship remains unclear. To address this issue, we utilized voxel-based morphometry (VBM) and resting-state functional connectivity (RSFC) analysis to identify the neural substrates of how is grit linked to procrastination. Behavioral results showed that procrastination was negatively associated with grit. VBM analysis revealed that gray matter volume (GMV) in the left precuneus was positively associated with the <em>consistency of interest</em> (CI), a subcomponent of grit, while the right medial orbital frontal cortex (mOFC) was positively correlated with the <em>perseverance of effort</em> (PE), another subcomponent of grit. Moreover, the RSFC analysis indicated that both precuneus-medial superior frontal gyrus (mSFG) and precuneus-insula connectivity were positively related to CI, while the functional coupling of right mOFC with left anterior cingulate cortex (ACC) was positively related to PE. Importantly, the structural equation modeling (SEM) results were well suited for the influence of grit on procrastination via both self-regulation (mOFC-ACC) and motivation pathways (precuneus-mSFG, precuneus-insula). Together, these findings imply that self-regulation and motivation could be two neural circuits underlying the impact of grit on procrastination.</p></div>\",\"PeriodicalId\":54549,\"journal\":{\"name\":\"Progress in Neuro-Psychopharmacology & Biological Psychiatry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Neuro-Psychopharmacology & Biological Psychiatry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0278584624001052\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Neuro-Psychopharmacology & Biological Psychiatry","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0278584624001052","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Neural basis responsible for effect of grit on procrastination: The interaction between the self-regulation and motivation neural pathways
Procrastination has a detrimental impact on academic performance, health, and subjective well-being. Previous studies indicated that grit was negatively related to procrastination. However, the underlying neural basis of this relationship remains unclear. To address this issue, we utilized voxel-based morphometry (VBM) and resting-state functional connectivity (RSFC) analysis to identify the neural substrates of how is grit linked to procrastination. Behavioral results showed that procrastination was negatively associated with grit. VBM analysis revealed that gray matter volume (GMV) in the left precuneus was positively associated with the consistency of interest (CI), a subcomponent of grit, while the right medial orbital frontal cortex (mOFC) was positively correlated with the perseverance of effort (PE), another subcomponent of grit. Moreover, the RSFC analysis indicated that both precuneus-medial superior frontal gyrus (mSFG) and precuneus-insula connectivity were positively related to CI, while the functional coupling of right mOFC with left anterior cingulate cortex (ACC) was positively related to PE. Importantly, the structural equation modeling (SEM) results were well suited for the influence of grit on procrastination via both self-regulation (mOFC-ACC) and motivation pathways (precuneus-mSFG, precuneus-insula). Together, these findings imply that self-regulation and motivation could be two neural circuits underlying the impact of grit on procrastination.
期刊介绍:
Progress in Neuro-Psychopharmacology & Biological Psychiatry is an international and multidisciplinary journal which aims to ensure the rapid publication of authoritative reviews and research papers dealing with experimental and clinical aspects of neuro-psychopharmacology and biological psychiatry. Issues of the journal are regularly devoted wholly in or in part to a topical subject.
Progress in Neuro-Psychopharmacology & Biological Psychiatry does not publish work on the actions of biological extracts unless the pharmacological active molecular substrate and/or specific receptor binding properties of the extract compounds are elucidated.