{"title":"基于 BiLSTM-RF-MPA 深度融合模型的页岩气非稳态生产时间序列预测新框架","authors":"","doi":"10.1016/j.petsci.2024.05.012","DOIUrl":null,"url":null,"abstract":"<div><div>Shale gas, as an environmentally friendly fossil energy resource, has gained significant commercial development and shows immense potential. However, accurately predicting shale gas production faces substantial challenges due to the complex law of decline, nonlinear and non-stationary features in production data, which greatly repair the robustness of current models in predicting shale gas production time series. To address these challenges and improve accuracy in production forecasting, this paper introduces a novel and innovative approach: a hybrid proxy model that combines the bi-directional long short-term memory (BiLSTM) neural network and random forest (RF) through deep learning. The BiLSTM neural network is adept at capturing long-term dependencies, making it suitable for understanding the intricate relationships between input and output variables in shale gas production. On the other hand, RF serves a dual purpose: reducing model variance and addressing the concept drift problem that arises in non-stationary time series predictions made by BiLSTM. By integrating these two models, the hybrid approach effectively captures the inherent dependencies present in long and nonstationary production time series, thereby reducing model uncertainty. Furthermore, the combination of BiLSTM and RF is optimized using the recently-proposed marine predators algorithm (MPA) to fine-tune hyperparameters and enhance the overall performance of the proxy model. The results demonstrate that the proposed BiLSTM-RF-MPA model achieves higher prediction accuracy and demonstrates stronger generalization capabilities by effectively handling the complex nonlinear and non-stationary characteristics of shale gas production time series. Compared to other models such as LSTM, BiLSTM, and RF, the proposed model exhibits superior fitting and prediction performance, with an average improvement in performance indicators exceeding 20%. This innovative framework provides valuable insights for forecasting the complex production performance of unconventional oil and gas reservoirs, which sheds light on the development of data-driven proxy models in the field of subsurface energy utilization.</div></div>","PeriodicalId":19938,"journal":{"name":"Petroleum Science","volume":"21 5","pages":"Pages 3326-3339"},"PeriodicalIF":6.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel framework for predicting non-stationary production time series of shale gas based on BiLSTM-RF-MPA deep fusion model\",\"authors\":\"\",\"doi\":\"10.1016/j.petsci.2024.05.012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Shale gas, as an environmentally friendly fossil energy resource, has gained significant commercial development and shows immense potential. However, accurately predicting shale gas production faces substantial challenges due to the complex law of decline, nonlinear and non-stationary features in production data, which greatly repair the robustness of current models in predicting shale gas production time series. To address these challenges and improve accuracy in production forecasting, this paper introduces a novel and innovative approach: a hybrid proxy model that combines the bi-directional long short-term memory (BiLSTM) neural network and random forest (RF) through deep learning. The BiLSTM neural network is adept at capturing long-term dependencies, making it suitable for understanding the intricate relationships between input and output variables in shale gas production. On the other hand, RF serves a dual purpose: reducing model variance and addressing the concept drift problem that arises in non-stationary time series predictions made by BiLSTM. By integrating these two models, the hybrid approach effectively captures the inherent dependencies present in long and nonstationary production time series, thereby reducing model uncertainty. Furthermore, the combination of BiLSTM and RF is optimized using the recently-proposed marine predators algorithm (MPA) to fine-tune hyperparameters and enhance the overall performance of the proxy model. The results demonstrate that the proposed BiLSTM-RF-MPA model achieves higher prediction accuracy and demonstrates stronger generalization capabilities by effectively handling the complex nonlinear and non-stationary characteristics of shale gas production time series. Compared to other models such as LSTM, BiLSTM, and RF, the proposed model exhibits superior fitting and prediction performance, with an average improvement in performance indicators exceeding 20%. This innovative framework provides valuable insights for forecasting the complex production performance of unconventional oil and gas reservoirs, which sheds light on the development of data-driven proxy models in the field of subsurface energy utilization.</div></div>\",\"PeriodicalId\":19938,\"journal\":{\"name\":\"Petroleum Science\",\"volume\":\"21 5\",\"pages\":\"Pages 3326-3339\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Petroleum Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1995822624001298\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petroleum Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1995822624001298","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
A novel framework for predicting non-stationary production time series of shale gas based on BiLSTM-RF-MPA deep fusion model
Shale gas, as an environmentally friendly fossil energy resource, has gained significant commercial development and shows immense potential. However, accurately predicting shale gas production faces substantial challenges due to the complex law of decline, nonlinear and non-stationary features in production data, which greatly repair the robustness of current models in predicting shale gas production time series. To address these challenges and improve accuracy in production forecasting, this paper introduces a novel and innovative approach: a hybrid proxy model that combines the bi-directional long short-term memory (BiLSTM) neural network and random forest (RF) through deep learning. The BiLSTM neural network is adept at capturing long-term dependencies, making it suitable for understanding the intricate relationships between input and output variables in shale gas production. On the other hand, RF serves a dual purpose: reducing model variance and addressing the concept drift problem that arises in non-stationary time series predictions made by BiLSTM. By integrating these two models, the hybrid approach effectively captures the inherent dependencies present in long and nonstationary production time series, thereby reducing model uncertainty. Furthermore, the combination of BiLSTM and RF is optimized using the recently-proposed marine predators algorithm (MPA) to fine-tune hyperparameters and enhance the overall performance of the proxy model. The results demonstrate that the proposed BiLSTM-RF-MPA model achieves higher prediction accuracy and demonstrates stronger generalization capabilities by effectively handling the complex nonlinear and non-stationary characteristics of shale gas production time series. Compared to other models such as LSTM, BiLSTM, and RF, the proposed model exhibits superior fitting and prediction performance, with an average improvement in performance indicators exceeding 20%. This innovative framework provides valuable insights for forecasting the complex production performance of unconventional oil and gas reservoirs, which sheds light on the development of data-driven proxy models in the field of subsurface energy utilization.
期刊介绍:
Petroleum Science is the only English journal in China on petroleum science and technology that is intended for professionals engaged in petroleum science research and technical applications all over the world, as well as the managerial personnel of oil companies. It covers petroleum geology, petroleum geophysics, petroleum engineering, petrochemistry & chemical engineering, petroleum mechanics, and economic management. It aims to introduce the latest results in oil industry research in China, promote cooperation in petroleum science research between China and the rest of the world, and build a bridge for scientific communication between China and the world.