利用粒子群优化-支持向量机(PSO-SVM)算法提高基于 XRF 传感器的斑岩铜矿分选能力

IF 11.7 1区 工程技术 Q1 MINING & MINERAL PROCESSING International Journal of Mining Science and Technology Pub Date : 2024-04-01 DOI:10.1016/j.ijmst.2024.04.002
Zhengyu Liu , Jue Kou , Zengxin Yan , Peilong Wang , Chang Liu , Chunbao Sun , Anlin Shao , Bern Klein
{"title":"利用粒子群优化-支持向量机(PSO-SVM)算法提高基于 XRF 传感器的斑岩铜矿分选能力","authors":"Zhengyu Liu ,&nbsp;Jue Kou ,&nbsp;Zengxin Yan ,&nbsp;Peilong Wang ,&nbsp;Chang Liu ,&nbsp;Chunbao Sun ,&nbsp;Anlin Shao ,&nbsp;Bern Klein","doi":"10.1016/j.ijmst.2024.04.002","DOIUrl":null,"url":null,"abstract":"<div><p>X-ray fluorescence (XRF) sensor-based ore sorting enables efficient beneficiation of heterogeneous ores, while intraparticle heterogeneity can cause significant grade detection errors, leading to misclassifications and hindering widespread technology adoption. Accurate classification models are crucial to determine if actual grade exceeds the sorting threshold using localized XRF signals. Previous studies mainly used linear regression (LR) algorithms including simple linear regression (SLR), multivariable linear regression (MLR), and multivariable linear regression with interaction (MLRI) but often fell short attaining satisfactory results. This study employed the particle swarm optimization support vector machine (PSO-SVM) algorithm for sorting porphyritic copper ore pebble. Lab-scale results showed PSO-SVM outperformed LR and raw data (RD) models and the significant interaction effects among input features was observed. Despite poor input data quality, PSO-SVM demonstrated exceptional capabilities. Lab-scale sorting achieved 93.0% accuracy, 0.24% grade increase, 84.94% recovery rate, 57.02% discard rate, and a remarkable 39.62 yuan/t net smelter return (NSR) increase compared to no sorting. These improvements were achieved by the PSO-SVM model with optimized input combinations and highest data quality (<em>T</em>=10, <em>T</em> is XRF testing times). The unsuitability of LR methods for XRF sensor-based sorting of investigated sample is illustrated. Input element selection and mineral association analysis elucidate element importance and influence mechanisms.</p></div>","PeriodicalId":48625,"journal":{"name":"International Journal of Mining Science and Technology","volume":"34 4","pages":"Pages 545-556"},"PeriodicalIF":11.7000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2095268624000454/pdfft?md5=65be88c9cb4387da21d889070a3cfe2f&pid=1-s2.0-S2095268624000454-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Enhancing XRF sensor-based sorting of porphyritic copper ore using particle swarm optimization-support vector machine (PSO-SVM) algorithm\",\"authors\":\"Zhengyu Liu ,&nbsp;Jue Kou ,&nbsp;Zengxin Yan ,&nbsp;Peilong Wang ,&nbsp;Chang Liu ,&nbsp;Chunbao Sun ,&nbsp;Anlin Shao ,&nbsp;Bern Klein\",\"doi\":\"10.1016/j.ijmst.2024.04.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>X-ray fluorescence (XRF) sensor-based ore sorting enables efficient beneficiation of heterogeneous ores, while intraparticle heterogeneity can cause significant grade detection errors, leading to misclassifications and hindering widespread technology adoption. Accurate classification models are crucial to determine if actual grade exceeds the sorting threshold using localized XRF signals. Previous studies mainly used linear regression (LR) algorithms including simple linear regression (SLR), multivariable linear regression (MLR), and multivariable linear regression with interaction (MLRI) but often fell short attaining satisfactory results. This study employed the particle swarm optimization support vector machine (PSO-SVM) algorithm for sorting porphyritic copper ore pebble. Lab-scale results showed PSO-SVM outperformed LR and raw data (RD) models and the significant interaction effects among input features was observed. Despite poor input data quality, PSO-SVM demonstrated exceptional capabilities. Lab-scale sorting achieved 93.0% accuracy, 0.24% grade increase, 84.94% recovery rate, 57.02% discard rate, and a remarkable 39.62 yuan/t net smelter return (NSR) increase compared to no sorting. These improvements were achieved by the PSO-SVM model with optimized input combinations and highest data quality (<em>T</em>=10, <em>T</em> is XRF testing times). The unsuitability of LR methods for XRF sensor-based sorting of investigated sample is illustrated. Input element selection and mineral association analysis elucidate element importance and influence mechanisms.</p></div>\",\"PeriodicalId\":48625,\"journal\":{\"name\":\"International Journal of Mining Science and Technology\",\"volume\":\"34 4\",\"pages\":\"Pages 545-556\"},\"PeriodicalIF\":11.7000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2095268624000454/pdfft?md5=65be88c9cb4387da21d889070a3cfe2f&pid=1-s2.0-S2095268624000454-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mining Science and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2095268624000454\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MINING & MINERAL PROCESSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mining Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095268624000454","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MINING & MINERAL PROCESSING","Score":null,"Total":0}
引用次数: 0

摘要

基于 X 射线荧光 (XRF) 传感器的矿石分选技术能够高效选别异质矿石,而颗粒内的异质性会造成严重的品位检测误差,导致错误分类,阻碍技术的广泛应用。准确的分类模型对于利用局部 XRF 信号确定实际品位是否超过分选阈值至关重要。以往的研究主要使用线性回归(LR)算法,包括简单线性回归(SLR)、多变量线性回归(MLR)和带交互的多变量线性回归(MLRI),但往往无法获得令人满意的结果。本研究采用粒子群优化支持向量机(PSO-SVM)算法对斑岩铜矿卵石进行分拣。实验室规模的结果表明,PSO-SVM 的性能优于 LR 和原始数据(RD)模型,并且观察到输入特征之间存在显著的交互效应。尽管输入数据质量较差,PSO-SVM 仍然表现出了卓越的能力。与未分选相比,实验室规模分选的准确率达到 93.0%,品位提高了 0.24%,回收率达到 84.94%,丢弃率为 57.02%,净冶炼收益(NSR)显著提高了 39.62 元/吨。这些改进是通过优化输入组合和最高数据质量(T=10,T 为 XRF 测试次数)的 PSO-SVM 模型实现的。LR 方法不适合基于 XRF 传感器的调查样本分选,这一点得到了说明。输入元素选择和矿物关联分析阐明了元素的重要性和影响机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhancing XRF sensor-based sorting of porphyritic copper ore using particle swarm optimization-support vector machine (PSO-SVM) algorithm

X-ray fluorescence (XRF) sensor-based ore sorting enables efficient beneficiation of heterogeneous ores, while intraparticle heterogeneity can cause significant grade detection errors, leading to misclassifications and hindering widespread technology adoption. Accurate classification models are crucial to determine if actual grade exceeds the sorting threshold using localized XRF signals. Previous studies mainly used linear regression (LR) algorithms including simple linear regression (SLR), multivariable linear regression (MLR), and multivariable linear regression with interaction (MLRI) but often fell short attaining satisfactory results. This study employed the particle swarm optimization support vector machine (PSO-SVM) algorithm for sorting porphyritic copper ore pebble. Lab-scale results showed PSO-SVM outperformed LR and raw data (RD) models and the significant interaction effects among input features was observed. Despite poor input data quality, PSO-SVM demonstrated exceptional capabilities. Lab-scale sorting achieved 93.0% accuracy, 0.24% grade increase, 84.94% recovery rate, 57.02% discard rate, and a remarkable 39.62 yuan/t net smelter return (NSR) increase compared to no sorting. These improvements were achieved by the PSO-SVM model with optimized input combinations and highest data quality (T=10, T is XRF testing times). The unsuitability of LR methods for XRF sensor-based sorting of investigated sample is illustrated. Input element selection and mineral association analysis elucidate element importance and influence mechanisms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Mining Science and Technology
International Journal of Mining Science and Technology Earth and Planetary Sciences-Geotechnical Engineering and Engineering Geology
CiteScore
19.10
自引率
11.90%
发文量
2541
审稿时长
44 days
期刊介绍: The International Journal of Mining Science and Technology, founded in 1990 as the Journal of China University of Mining and Technology, is a monthly English-language journal. It publishes original research papers and high-quality reviews that explore the latest advancements in theories, methodologies, and applications within the realm of mining sciences and technologies. The journal serves as an international exchange forum for readers and authors worldwide involved in mining sciences and technologies. All papers undergo a peer-review process and meticulous editing by specialists and authorities, with the entire submission-to-publication process conducted electronically.
期刊最新文献
Gouge stability controlled by temperature elevation and obsidian addition in basaltic faults and implications for moonquakes Physical, mechanical and thermal properties of vacuum sintered HUST-1 lunar regolith simulant Design, test, and verification of in-situ condition preserved coring and analysis system in lunar-based simulation environment Machine learning applications on lunar meteorite minerals: From classification to mechanical properties prediction Formation of Tianwen-1 landing crater and mechanical properties of Martian soil near the landing site
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1