ConvEQ:利用短时频率变换进行地震相位分类的卷积神经网络

IF 4.2 2区 地球科学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computers & Geosciences Pub Date : 2024-05-23 DOI:10.1016/j.cageo.2024.105624
Gul Rukh Khattak, Gul Muhammad Khan, Suhail Yousaf
{"title":"ConvEQ:利用短时频率变换进行地震相位分类的卷积神经网络","authors":"Gul Rukh Khattak,&nbsp;Gul Muhammad Khan,&nbsp;Suhail Yousaf","doi":"10.1016/j.cageo.2024.105624","DOIUrl":null,"url":null,"abstract":"<div><p>We present <span><math><mrow><mi>C</mi><mi>o</mi><mi>n</mi><mi>v</mi><mi>E</mi><mi>Q</mi></mrow></math></span> as a tool for discriminating seismic phases, leveraging artificial intelligence technique (Convolutional Neural Network) for short-time Frequency Transform of the seismic signal. Timely detection of the vertical (<span><math><mi>P</mi></math></span>) wave from an earthquake can generate a warning several tens of precious seconds before the more destructive waves strike. We propose a train-for-each-station approach for an Internet-of-Things-based Smart Earthquake Early Warning System, where lightweight neural networks trained for the seismic data belonging to each station are implemented on edge devices directly interfaced with seismometers. The approach has the potential to get the most from the sparse seismic network for Pakistan and other third-world countries. We train networks for multi-station and single-station data and achieve 96% and 99% accuracy, respectively, proving that train-for-each-station maximizes accuracy. The total processing time (including preprocessing and inference) is about <span><math><mrow><mn>30</mn><mspace></mspace><mi>ms</mi></mrow></math></span> for each event, thus suitable for real-time deployment. We further compare the performance of <span><math><mrow><mi>C</mi><mi>o</mi><mi>n</mi><mi>v</mi><mi>E</mi><mi>Q</mi></mrow></math></span> on simulated real-time data with several state-of-the-art contemporary algorithms. Our proposed approach demonstrates a robust response on diverse metrics. The <span><math><mrow><mi>C</mi><mi>o</mi><mi>n</mi><mi>v</mi><mi>E</mi><mi>Q</mi><mi>Z</mi></mrow></math></span> classifies the vertical seismic signal component with high accuracy and the <span><math><mrow><mi>C</mi><mi>o</mi><mi>n</mi><mi>v</mi><mi>E</mi><mi>Q</mi><mi>X</mi></mrow></math></span> can classify any seismic data component, inculcating robustness against connectivity issues.</p></div>","PeriodicalId":55221,"journal":{"name":"Computers & Geosciences","volume":"189 ","pages":"Article 105624"},"PeriodicalIF":4.2000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ConvEQ: Convolutional neural network for earthquake phase classification using short time frequency transform\",\"authors\":\"Gul Rukh Khattak,&nbsp;Gul Muhammad Khan,&nbsp;Suhail Yousaf\",\"doi\":\"10.1016/j.cageo.2024.105624\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We present <span><math><mrow><mi>C</mi><mi>o</mi><mi>n</mi><mi>v</mi><mi>E</mi><mi>Q</mi></mrow></math></span> as a tool for discriminating seismic phases, leveraging artificial intelligence technique (Convolutional Neural Network) for short-time Frequency Transform of the seismic signal. Timely detection of the vertical (<span><math><mi>P</mi></math></span>) wave from an earthquake can generate a warning several tens of precious seconds before the more destructive waves strike. We propose a train-for-each-station approach for an Internet-of-Things-based Smart Earthquake Early Warning System, where lightweight neural networks trained for the seismic data belonging to each station are implemented on edge devices directly interfaced with seismometers. The approach has the potential to get the most from the sparse seismic network for Pakistan and other third-world countries. We train networks for multi-station and single-station data and achieve 96% and 99% accuracy, respectively, proving that train-for-each-station maximizes accuracy. The total processing time (including preprocessing and inference) is about <span><math><mrow><mn>30</mn><mspace></mspace><mi>ms</mi></mrow></math></span> for each event, thus suitable for real-time deployment. We further compare the performance of <span><math><mrow><mi>C</mi><mi>o</mi><mi>n</mi><mi>v</mi><mi>E</mi><mi>Q</mi></mrow></math></span> on simulated real-time data with several state-of-the-art contemporary algorithms. Our proposed approach demonstrates a robust response on diverse metrics. The <span><math><mrow><mi>C</mi><mi>o</mi><mi>n</mi><mi>v</mi><mi>E</mi><mi>Q</mi><mi>Z</mi></mrow></math></span> classifies the vertical seismic signal component with high accuracy and the <span><math><mrow><mi>C</mi><mi>o</mi><mi>n</mi><mi>v</mi><mi>E</mi><mi>Q</mi><mi>X</mi></mrow></math></span> can classify any seismic data component, inculcating robustness against connectivity issues.</p></div>\",\"PeriodicalId\":55221,\"journal\":{\"name\":\"Computers & Geosciences\",\"volume\":\"189 \",\"pages\":\"Article 105624\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Geosciences\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0098300424001079\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Geosciences","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098300424001079","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

我们利用人工智能技术(卷积神经网络)对地震信号进行短时频率变换,将 ConvEQ 作为地震相位判别工具。及时发现地震的垂直(P)波可在更具破坏性的地震波来临前几十秒发出警报。我们为基于物联网的智能地震预警系统提出了一种 "每个台站训练 "方法,即在与地震仪直接连接的边缘设备上实现针对每个台站地震数据训练的轻量级神经网络。这种方法有望为巴基斯坦和其他第三世界国家从稀疏的地震网络中获得最大收益。我们对多台站和单台站数据进行了网络训练,准确率分别达到 96% 和 99%,证明对每个台站进行训练能最大限度地提高准确率。每个事件的总处理时间(包括预处理和推理)约为 30 毫秒,因此适合实时部署。我们进一步将 ConvEQ 在模拟实时数据上的性能与几种最先进的当代算法进行了比较。我们提出的方法在各种指标上都表现出了强大的响应能力。ConvEQZ 可以高精度地对垂直地震信号成分进行分类,ConvEQX 可以对任何地震数据成分进行分类,从而增强了对连接性问题的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ConvEQ: Convolutional neural network for earthquake phase classification using short time frequency transform

We present ConvEQ as a tool for discriminating seismic phases, leveraging artificial intelligence technique (Convolutional Neural Network) for short-time Frequency Transform of the seismic signal. Timely detection of the vertical (P) wave from an earthquake can generate a warning several tens of precious seconds before the more destructive waves strike. We propose a train-for-each-station approach for an Internet-of-Things-based Smart Earthquake Early Warning System, where lightweight neural networks trained for the seismic data belonging to each station are implemented on edge devices directly interfaced with seismometers. The approach has the potential to get the most from the sparse seismic network for Pakistan and other third-world countries. We train networks for multi-station and single-station data and achieve 96% and 99% accuracy, respectively, proving that train-for-each-station maximizes accuracy. The total processing time (including preprocessing and inference) is about 30ms for each event, thus suitable for real-time deployment. We further compare the performance of ConvEQ on simulated real-time data with several state-of-the-art contemporary algorithms. Our proposed approach demonstrates a robust response on diverse metrics. The ConvEQZ classifies the vertical seismic signal component with high accuracy and the ConvEQX can classify any seismic data component, inculcating robustness against connectivity issues.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Geosciences
Computers & Geosciences 地学-地球科学综合
CiteScore
9.30
自引率
6.80%
发文量
164
审稿时长
3.4 months
期刊介绍: Computers & Geosciences publishes high impact, original research at the interface between Computer Sciences and Geosciences. Publications should apply modern computer science paradigms, whether computational or informatics-based, to address problems in the geosciences.
期刊最新文献
Multimodal feature integration network for lithology identification from point cloud data A two-dimensional magnetotelluric deep learning inversion approach based on improved Dense Convolutional Network Removing atmospheric noise from InSAR interferograms in mountainous regions with a convolutional neural network Novel empirical curvelet denoising strategy for suppressing mixed noise of microseismic data Curvilinear lineament extraction: Bayesian optimization of Principal Component Wavelet Analysis and Hysteresis Thresholding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1