协同操纵非富勒烯受体的烷基链和不对称侧基的形状,使有机太阳能电池的效率达到 18.5%

IF 5.4 1区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY GIANT Pub Date : 2024-05-23 DOI:10.1016/j.giant.2024.100294
Xinyu Tong , Zhenyu Chen , Jingyu Shi , Jinfeng Ge , Wei Song , Yuanyuan Meng , Ziyi Ge
{"title":"协同操纵非富勒烯受体的烷基链和不对称侧基的形状,使有机太阳能电池的效率达到 18.5%","authors":"Xinyu Tong ,&nbsp;Zhenyu Chen ,&nbsp;Jingyu Shi ,&nbsp;Jinfeng Ge ,&nbsp;Wei Song ,&nbsp;Yuanyuan Meng ,&nbsp;Ziyi Ge","doi":"10.1016/j.giant.2024.100294","DOIUrl":null,"url":null,"abstract":"<div><p>Side-chain modification and asymmetric design for non-fullerene acceptors (NFAs) have been proven to be effective methods for harvesting high-performance organic solar cells (OSCs). Combining the two molecular design strategies, we adopted phenyl chain and alkyl chains with different shapes to develop two novel asymmetric NFAs, named BTP-P2EH<img>C11 and BTP-P2EH<img>C2C4. Compared with BTP-P2EH<img>C2C4 attached 2-ethylhexyl side chain, BTP-P2EH<img>C11 with linear alkyl side chain have slightly red-shifted absorption and intensive absorption strength. Moreover, the PM6:BTP-P2EH<img>C11 blend film presents higher and more balanced charge mobilities, reducing charge recombination, tighter intermolecular packing and more favorable fibrous network morphology with appropriate phase separation than PM6:BTP-P2EH<img>C2C4, which lead to significantly enhanced short-circuit current density (<em>J</em><sub>SC</sub>) of PM6:BTP-P2EH<img>C11-based devices. Thus, the OSCs based on PM6:BTP-P2EH<img>C11 achieve a superior power conversion efficiency (PCE) of 18.50% with a good trade-off among open-circuit voltage (<em>V</em><sub>OC</sub>) of 0.876 V, <em>J</em><sub>SC</sub> of 26.85 mA cm<sup>−2</sup> and fill factor (FF) of 78.65%, while PM6:BTP-P2EH<img>C2C4-based device exhibits a lower PCE of 17.49%. Our investigation elucidates that the combination of finely optimizing the shape of alkyl-chain and asymmetric side groups of NFAs could pave a promising avenue toward morphology optimization and performance promotion of OSCs.</p></div>","PeriodicalId":34151,"journal":{"name":"GIANT","volume":"19 ","pages":"Article 100294"},"PeriodicalIF":5.4000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666542524000584/pdfft?md5=fa4baf84a06e851e2e43996b95063119&pid=1-s2.0-S2666542524000584-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Synergistically manipulating the shape of alkyl-chain and asymmetric side groups of non-fullerene acceptors enables organic solar cells to reach 18.5% efficiency\",\"authors\":\"Xinyu Tong ,&nbsp;Zhenyu Chen ,&nbsp;Jingyu Shi ,&nbsp;Jinfeng Ge ,&nbsp;Wei Song ,&nbsp;Yuanyuan Meng ,&nbsp;Ziyi Ge\",\"doi\":\"10.1016/j.giant.2024.100294\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Side-chain modification and asymmetric design for non-fullerene acceptors (NFAs) have been proven to be effective methods for harvesting high-performance organic solar cells (OSCs). Combining the two molecular design strategies, we adopted phenyl chain and alkyl chains with different shapes to develop two novel asymmetric NFAs, named BTP-P2EH<img>C11 and BTP-P2EH<img>C2C4. Compared with BTP-P2EH<img>C2C4 attached 2-ethylhexyl side chain, BTP-P2EH<img>C11 with linear alkyl side chain have slightly red-shifted absorption and intensive absorption strength. Moreover, the PM6:BTP-P2EH<img>C11 blend film presents higher and more balanced charge mobilities, reducing charge recombination, tighter intermolecular packing and more favorable fibrous network morphology with appropriate phase separation than PM6:BTP-P2EH<img>C2C4, which lead to significantly enhanced short-circuit current density (<em>J</em><sub>SC</sub>) of PM6:BTP-P2EH<img>C11-based devices. Thus, the OSCs based on PM6:BTP-P2EH<img>C11 achieve a superior power conversion efficiency (PCE) of 18.50% with a good trade-off among open-circuit voltage (<em>V</em><sub>OC</sub>) of 0.876 V, <em>J</em><sub>SC</sub> of 26.85 mA cm<sup>−2</sup> and fill factor (FF) of 78.65%, while PM6:BTP-P2EH<img>C2C4-based device exhibits a lower PCE of 17.49%. Our investigation elucidates that the combination of finely optimizing the shape of alkyl-chain and asymmetric side groups of NFAs could pave a promising avenue toward morphology optimization and performance promotion of OSCs.</p></div>\",\"PeriodicalId\":34151,\"journal\":{\"name\":\"GIANT\",\"volume\":\"19 \",\"pages\":\"Article 100294\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666542524000584/pdfft?md5=fa4baf84a06e851e2e43996b95063119&pid=1-s2.0-S2666542524000584-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"GIANT\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666542524000584\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"GIANT","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666542524000584","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

非富勒烯受体(NFAs)的侧链修饰和不对称设计已被证明是获得高性能有机太阳能电池(OSCs)的有效方法。结合这两种分子设计策略,我们采用不同形状的苯基链和烷基链开发了两种新型不对称非富勒烯受体,分别命名为 BTP-P2EHC11 和 BTP-P2EHC2C4。与带有 2-乙基己基侧链的 BTP-P2EHC2C4 相比,带有线性烷基侧链的 BTP-P2EHC11 的吸收率略有红移,吸收强度较大。此外,与 PM6:BTP-P2EHC2C4 相比,PM6:BTP-P2EHC11 混合薄膜具有更高更均衡的电荷迁移率、更低的电荷重组、更紧密的分子间堆积和更有利的纤维状网络形态以及适当的相分离,从而显著提高了基于 PM6:BTP-P2EHC11 器件的短路电流密度(JSC)。因此,基于 PM6:BTP-P2EHC11 的 OSC 在开路电压 (VOC) 0.876 V、短路电流密度 (JSC) 26.85 mA cm-2 和填充因子 (FF) 78.65% 之间实现了 18.50% 的出色功率转换效率 (PCE),而基于 PM6:BTP-P2EHC2C4 的器件则表现出 17.49% 的较低 PCE。我们的研究阐明,将烷基链的形状和 NFA 的不对称侧基进行精细优化相结合,可以为 OSC 的形态优化和性能提升铺平道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Synergistically manipulating the shape of alkyl-chain and asymmetric side groups of non-fullerene acceptors enables organic solar cells to reach 18.5% efficiency

Side-chain modification and asymmetric design for non-fullerene acceptors (NFAs) have been proven to be effective methods for harvesting high-performance organic solar cells (OSCs). Combining the two molecular design strategies, we adopted phenyl chain and alkyl chains with different shapes to develop two novel asymmetric NFAs, named BTP-P2EHC11 and BTP-P2EHC2C4. Compared with BTP-P2EHC2C4 attached 2-ethylhexyl side chain, BTP-P2EHC11 with linear alkyl side chain have slightly red-shifted absorption and intensive absorption strength. Moreover, the PM6:BTP-P2EHC11 blend film presents higher and more balanced charge mobilities, reducing charge recombination, tighter intermolecular packing and more favorable fibrous network morphology with appropriate phase separation than PM6:BTP-P2EHC2C4, which lead to significantly enhanced short-circuit current density (JSC) of PM6:BTP-P2EHC11-based devices. Thus, the OSCs based on PM6:BTP-P2EHC11 achieve a superior power conversion efficiency (PCE) of 18.50% with a good trade-off among open-circuit voltage (VOC) of 0.876 V, JSC of 26.85 mA cm−2 and fill factor (FF) of 78.65%, while PM6:BTP-P2EHC2C4-based device exhibits a lower PCE of 17.49%. Our investigation elucidates that the combination of finely optimizing the shape of alkyl-chain and asymmetric side groups of NFAs could pave a promising avenue toward morphology optimization and performance promotion of OSCs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
GIANT
GIANT Multiple-
CiteScore
8.50
自引率
8.60%
发文量
46
审稿时长
42 days
期刊介绍: Giant is an interdisciplinary title focusing on fundamental and applied macromolecular science spanning all chemistry, physics, biology, and materials aspects of the field in the broadest sense. Key areas covered include macromolecular chemistry, supramolecular assembly, multiscale and multifunctional materials, organic-inorganic hybrid materials, biophysics, biomimetics and surface science. Core topics range from developments in synthesis, characterisation and assembly towards creating uniformly sized precision macromolecules with tailored properties, to the design and assembly of nanostructured materials in multiple dimensions, and further to the study of smart or living designer materials with tuneable multiscale properties.
期刊最新文献
Influence of activation/deactivation process on surface-initiated atom transfer radical polymerization: An in silico investigation Homochiral “8″-shaped nanotoroids assembled from polypeptides Small dop of comonomer, giant shift of dynamics: α-methyl-regulated viscoelasticity of poly(methacrylamide) hydrogels The effect of dynamic cross-links and mesogenic groups on the swelling and collapse of polymer gels Binary blends of poly(lactic acid) and poly(methyl methacrylate) for high energy density and charge/discharge efficiency capacitors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1