考虑巷道开挖和钻孔扰动因素的煤层原位保压取心的最佳深度

IF 6 1区 工程技术 Q2 ENERGY & FUELS Petroleum Science Pub Date : 2024-10-01 DOI:10.1016/j.petsci.2024.05.014
{"title":"考虑巷道开挖和钻孔扰动因素的煤层原位保压取心的最佳深度","authors":"","doi":"10.1016/j.petsci.2024.05.014","DOIUrl":null,"url":null,"abstract":"<div><div>Using pressure-preserved coring technique to determine in-situ gas content provides a more precise assessment of gas resource reserves and safeguard of mining safety in coal seams. How coring technique and depth affect the determination of gas content is unclear due to borehole zoning rupture caused by roadway excavation and drilling disturbance. To this end, a proposed coupling model of stress distribution and gas migration was simulated and validated by FLAC<sup>3D</sup> and COMSOL Multiphysics considering superposition effects of roadway excavation and drilling disturbance. The findings indicate that the roadway surrounding rock displays distinct zoning features including stress relief zone, stress concentration zone that is composed of plastic zone, elastic zone, and original stress zone; and the broken situations depending on the borehole peeping are consistent with the corresponding simulation results. On this basis, this study proposes a set of drilling coring depth calculation and prediction model for the gas desorption affected area under engineering disturbance. Optimal depth of coring drilling is not only approach to the in-situ coal bulk, but also can get the balance of the drilling workload and cost controlling. According to the typical mine site geological conditions and the numerical simulation results in this study, if the roadway excavation time is ∼1 year, it is recommended that the pressure-preserved coring depth should be greater than 17 m.</div></div>","PeriodicalId":19938,"journal":{"name":"Petroleum Science","volume":"21 5","pages":"Pages 3517-3534"},"PeriodicalIF":6.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal depth of in-situ pressure-preserved coring in coal seams considering roadway excavation and drilling disturbance\",\"authors\":\"\",\"doi\":\"10.1016/j.petsci.2024.05.014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Using pressure-preserved coring technique to determine in-situ gas content provides a more precise assessment of gas resource reserves and safeguard of mining safety in coal seams. How coring technique and depth affect the determination of gas content is unclear due to borehole zoning rupture caused by roadway excavation and drilling disturbance. To this end, a proposed coupling model of stress distribution and gas migration was simulated and validated by FLAC<sup>3D</sup> and COMSOL Multiphysics considering superposition effects of roadway excavation and drilling disturbance. The findings indicate that the roadway surrounding rock displays distinct zoning features including stress relief zone, stress concentration zone that is composed of plastic zone, elastic zone, and original stress zone; and the broken situations depending on the borehole peeping are consistent with the corresponding simulation results. On this basis, this study proposes a set of drilling coring depth calculation and prediction model for the gas desorption affected area under engineering disturbance. Optimal depth of coring drilling is not only approach to the in-situ coal bulk, but also can get the balance of the drilling workload and cost controlling. According to the typical mine site geological conditions and the numerical simulation results in this study, if the roadway excavation time is ∼1 year, it is recommended that the pressure-preserved coring depth should be greater than 17 m.</div></div>\",\"PeriodicalId\":19938,\"journal\":{\"name\":\"Petroleum Science\",\"volume\":\"21 5\",\"pages\":\"Pages 3517-3534\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Petroleum Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1995822624001316\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petroleum Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1995822624001316","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

采用保压取心技术测定原地瓦斯含量,可以更精确地评估瓦斯资源储量,保障煤层开采安全。由于巷道开挖和钻孔扰动造成钻孔分区破裂,取芯技术和深度对瓦斯含量测定的影响尚不明确。为此,考虑到巷道掘进和钻孔扰动的叠加效应,利用 FLAC3D 和 COMSOL Multiphysics 模拟并验证了所提出的应力分布和瓦斯迁移耦合模型。研究结果表明,巷道围岩呈现出明显的分区特征,包括应力释放区、由塑性区、弹性区和原始应力区组成的应力集中区;钻孔掘进造成的破碎情况与相应的模拟结果一致。在此基础上,本研究提出了一套工程扰动下瓦斯解吸影响区钻孔取心深度计算与预测模型。最佳钻孔取心深度不仅可以接近原位煤体,还可以兼顾钻孔工作量和成本控制。根据矿区典型地质条件和数值模拟结果,若巷道掘进时间为 1 年,建议保压取心深度应大于 17 m。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimal depth of in-situ pressure-preserved coring in coal seams considering roadway excavation and drilling disturbance
Using pressure-preserved coring technique to determine in-situ gas content provides a more precise assessment of gas resource reserves and safeguard of mining safety in coal seams. How coring technique and depth affect the determination of gas content is unclear due to borehole zoning rupture caused by roadway excavation and drilling disturbance. To this end, a proposed coupling model of stress distribution and gas migration was simulated and validated by FLAC3D and COMSOL Multiphysics considering superposition effects of roadway excavation and drilling disturbance. The findings indicate that the roadway surrounding rock displays distinct zoning features including stress relief zone, stress concentration zone that is composed of plastic zone, elastic zone, and original stress zone; and the broken situations depending on the borehole peeping are consistent with the corresponding simulation results. On this basis, this study proposes a set of drilling coring depth calculation and prediction model for the gas desorption affected area under engineering disturbance. Optimal depth of coring drilling is not only approach to the in-situ coal bulk, but also can get the balance of the drilling workload and cost controlling. According to the typical mine site geological conditions and the numerical simulation results in this study, if the roadway excavation time is ∼1 year, it is recommended that the pressure-preserved coring depth should be greater than 17 m.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Petroleum Science
Petroleum Science 地学-地球化学与地球物理
CiteScore
7.70
自引率
16.10%
发文量
311
审稿时长
63 days
期刊介绍: Petroleum Science is the only English journal in China on petroleum science and technology that is intended for professionals engaged in petroleum science research and technical applications all over the world, as well as the managerial personnel of oil companies. It covers petroleum geology, petroleum geophysics, petroleum engineering, petrochemistry & chemical engineering, petroleum mechanics, and economic management. It aims to introduce the latest results in oil industry research in China, promote cooperation in petroleum science research between China and the rest of the world, and build a bridge for scientific communication between China and the world.
期刊最新文献
Characterization of chemical composition of high viscosity heavy oils: Macroscopic properties, and semi-quantitative analysis of molecular composition using high-resolution mass spectrometry The impact of industrial transformation on green economic efficiency: New evidence based on energy use Morphological complexity and azimuthal disorder of evolving pore space in low-maturity oil shale during in-situ thermal upgrading and impacts on permeability Influence of the mechanical properties of materials on the ultimate pressure-bearing capability of a pressure-preserving controller 3D rock physics template-based probabilistic estimation of tight sandstone reservoir properties
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1