室温下稳定扭弯向列材料 1 年不结晶

IF 5.4 1区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY GIANT Pub Date : 2024-05-22 DOI:10.1016/j.giant.2024.100290
Conglong Yuan , Yuxing Zhan , Huixian Liu , Zhaoyi Wang , Ning Shen , Binghui Liu , Honglong Hu , Zhigang Zheng
{"title":"室温下稳定扭弯向列材料 1 年不结晶","authors":"Conglong Yuan ,&nbsp;Yuxing Zhan ,&nbsp;Huixian Liu ,&nbsp;Zhaoyi Wang ,&nbsp;Ning Shen ,&nbsp;Binghui Liu ,&nbsp;Honglong Hu ,&nbsp;Zhigang Zheng","doi":"10.1016/j.giant.2024.100290","DOIUrl":null,"url":null,"abstract":"<div><p>The twist-bend nematic (N<sub>TB</sub>) phase of achiral liquid crystals (LCs) manifests a unique self-assembled heliconical structure with nanometer-scale pitch length, mirroring the chiral symmetry-breaking phenomena in nature, thus sparking widespread research interest. However, the ingenious N<sub>TB</sub> phase is only stable at high temperatures within a very limited temperature interval, often undergoing inevitable crystallization at low temperatures. Herein, room temperature supercooled N<sub>TB</sub> material systems composed of meticulously designed LC dimer mixtures with varying molecular curvatures and central flexibility were developed, resulting in complete resistance to crystallization even after 1 year of storage. Furthermore, the proposed N<sub>TB</sub> material systems demonstrated exceptional compatibility with common nematic LCs, facilitating the tailoring of overall physical parameters, particularly to achieve a sufficiently low bend elastic constant with excellent stability. This work represents a paradigmatic advancement forward in realizing stable N<sub>TB</sub> phase materials with a broad temperature range and resistance to crystallization, thereby tackling the enduring and seemingly insurmountable challenge while providing impetus for further exploration of their applications in soft matter, crystallography, and advanced photonics.</p></div>","PeriodicalId":34151,"journal":{"name":"GIANT","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666542524000547/pdfft?md5=ffedc8eea5fda2ed3e0b8c09e2c5379d&pid=1-s2.0-S2666542524000547-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Room temperature stable twist-bend nematic materials without crystallization over 1 year\",\"authors\":\"Conglong Yuan ,&nbsp;Yuxing Zhan ,&nbsp;Huixian Liu ,&nbsp;Zhaoyi Wang ,&nbsp;Ning Shen ,&nbsp;Binghui Liu ,&nbsp;Honglong Hu ,&nbsp;Zhigang Zheng\",\"doi\":\"10.1016/j.giant.2024.100290\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The twist-bend nematic (N<sub>TB</sub>) phase of achiral liquid crystals (LCs) manifests a unique self-assembled heliconical structure with nanometer-scale pitch length, mirroring the chiral symmetry-breaking phenomena in nature, thus sparking widespread research interest. However, the ingenious N<sub>TB</sub> phase is only stable at high temperatures within a very limited temperature interval, often undergoing inevitable crystallization at low temperatures. Herein, room temperature supercooled N<sub>TB</sub> material systems composed of meticulously designed LC dimer mixtures with varying molecular curvatures and central flexibility were developed, resulting in complete resistance to crystallization even after 1 year of storage. Furthermore, the proposed N<sub>TB</sub> material systems demonstrated exceptional compatibility with common nematic LCs, facilitating the tailoring of overall physical parameters, particularly to achieve a sufficiently low bend elastic constant with excellent stability. This work represents a paradigmatic advancement forward in realizing stable N<sub>TB</sub> phase materials with a broad temperature range and resistance to crystallization, thereby tackling the enduring and seemingly insurmountable challenge while providing impetus for further exploration of their applications in soft matter, crystallography, and advanced photonics.</p></div>\",\"PeriodicalId\":34151,\"journal\":{\"name\":\"GIANT\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666542524000547/pdfft?md5=ffedc8eea5fda2ed3e0b8c09e2c5379d&pid=1-s2.0-S2666542524000547-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"GIANT\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666542524000547\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"GIANT","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666542524000547","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

非手性液晶(LCs)的扭转弯曲向列(NTB)相表现出独特的自组装螺旋结构,其间距长度达到纳米级,反映了自然界中的手性对称破缺现象,因此引发了广泛的研究兴趣。然而,巧妙的 NTB 相只能在非常有限的温度区间内的高温下保持稳定,在低温下往往会发生不可避免的结晶。在此,我们开发了由精心设计的具有不同分子曲率和中心柔性的低聚物二聚体混合物组成的室温过冷 NTB 材料体系,即使在储存一年后也能完全防止结晶。此外,所提出的 NTB 材料体系与普通向列低聚物具有出色的兼容性,有助于定制整体物理参数,特别是实现足够低的弯曲弹性常数和出色的稳定性。这项工作代表了在实现具有宽温度范围和抗结晶性的稳定 NTB 相材料方面取得的典范性进展,从而解决了看似难以克服的持久挑战,同时为进一步探索其在软物质、晶体学和先进光子学中的应用提供了动力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Room temperature stable twist-bend nematic materials without crystallization over 1 year

The twist-bend nematic (NTB) phase of achiral liquid crystals (LCs) manifests a unique self-assembled heliconical structure with nanometer-scale pitch length, mirroring the chiral symmetry-breaking phenomena in nature, thus sparking widespread research interest. However, the ingenious NTB phase is only stable at high temperatures within a very limited temperature interval, often undergoing inevitable crystallization at low temperatures. Herein, room temperature supercooled NTB material systems composed of meticulously designed LC dimer mixtures with varying molecular curvatures and central flexibility were developed, resulting in complete resistance to crystallization even after 1 year of storage. Furthermore, the proposed NTB material systems demonstrated exceptional compatibility with common nematic LCs, facilitating the tailoring of overall physical parameters, particularly to achieve a sufficiently low bend elastic constant with excellent stability. This work represents a paradigmatic advancement forward in realizing stable NTB phase materials with a broad temperature range and resistance to crystallization, thereby tackling the enduring and seemingly insurmountable challenge while providing impetus for further exploration of their applications in soft matter, crystallography, and advanced photonics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
GIANT
GIANT Multiple-
CiteScore
8.50
自引率
8.60%
发文量
46
审稿时长
42 days
期刊介绍: Giant is an interdisciplinary title focusing on fundamental and applied macromolecular science spanning all chemistry, physics, biology, and materials aspects of the field in the broadest sense. Key areas covered include macromolecular chemistry, supramolecular assembly, multiscale and multifunctional materials, organic-inorganic hybrid materials, biophysics, biomimetics and surface science. Core topics range from developments in synthesis, characterisation and assembly towards creating uniformly sized precision macromolecules with tailored properties, to the design and assembly of nanostructured materials in multiple dimensions, and further to the study of smart or living designer materials with tuneable multiscale properties.
期刊最新文献
Small dop of comonomer, giant shift of dynamics: α-methyl-regulated viscoelasticity of poly(methacrylamide) hydrogels The effect of dynamic cross-links and mesogenic groups on the swelling and collapse of polymer gels Binary blends of poly(lactic acid) and poly(methyl methacrylate) for high energy density and charge/discharge efficiency capacitors Systematic anode engineering enabling universal efficiency improvements in organic solar cells Thermal response color-tunable electroluminescent device for real-time visual temperature monitoring
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1