{"title":"制药进展:将人工智能融入 QSAR、组合化学和绿色化学实践中","authors":"","doi":"10.1016/j.ipha.2024.05.005","DOIUrl":null,"url":null,"abstract":"<div><div>The utilization of pharmaceuticals in medical and veterinary treatment has not only improved human and animal health but has also boosted food-production and economic welfare. However, the release of pharmaceuticals in the environment through various pathways, such as manufacturing, human excretion, and substandard disposal, can have detrimental effects on ecosystems and various biological entities associated with these systems. High levels of pharmaceutical residues have been detected further downstream of manufacturing facilities, and untreated veterinary medication leftovers can end up in waterbodies. Methods utilizing artificial intelligence (AI) and machine learning (ML) have been employed to establish connections between chemical structure and biological activity, referred to as quantitative structure–activity relationships (QSARs) for the compounds. QSAR models use chemical structures to predict hazardous activity when experimental data is lacking, thereby helping prioritize chemicals for testing and compilation. Combinatorial chemistry, by enabling high-throughput compound synthesis, accelerates the generation of targeted molecules for testing across various fields. Green chemistry helps in creating, designing, and implementing chemical products and procedures with the aim of minimizing or eradicating the generation and subsequent utilization of harmful substances. In addition, pharmaceutical sensor technologies (PST) are critical tools in modern medicine, enabling precise detection and monitoring of various biochemical and physiological markers and parameters. The synergy between AI, ML, QSAR modeling, and the implementation of combinatorial and green chemistry methodologies is pivotal in driving the development of innovative products and PST in pharmaceutics. This interdisciplinary approach is crucial for creating solutions with reduced toxicity in pharmaceutical processes, thereby ensuring enhanced public safety and promoting the sustainability of environmental resources. By integrating these advanced methodologies, the pharmaceutical industry can achieve greater detection accuracy, efficiency in production of eco-friendly products, ultimately leading to safer pharmaceutics and a healthier planet.</div></div>","PeriodicalId":100682,"journal":{"name":"Intelligent Pharmacy","volume":"2 5","pages":"Pages 598-608"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pharmaceutical advances: Integrating artificial intelligence in QSAR, combinatorial and green chemistry practices\",\"authors\":\"\",\"doi\":\"10.1016/j.ipha.2024.05.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The utilization of pharmaceuticals in medical and veterinary treatment has not only improved human and animal health but has also boosted food-production and economic welfare. However, the release of pharmaceuticals in the environment through various pathways, such as manufacturing, human excretion, and substandard disposal, can have detrimental effects on ecosystems and various biological entities associated with these systems. High levels of pharmaceutical residues have been detected further downstream of manufacturing facilities, and untreated veterinary medication leftovers can end up in waterbodies. Methods utilizing artificial intelligence (AI) and machine learning (ML) have been employed to establish connections between chemical structure and biological activity, referred to as quantitative structure–activity relationships (QSARs) for the compounds. QSAR models use chemical structures to predict hazardous activity when experimental data is lacking, thereby helping prioritize chemicals for testing and compilation. Combinatorial chemistry, by enabling high-throughput compound synthesis, accelerates the generation of targeted molecules for testing across various fields. Green chemistry helps in creating, designing, and implementing chemical products and procedures with the aim of minimizing or eradicating the generation and subsequent utilization of harmful substances. In addition, pharmaceutical sensor technologies (PST) are critical tools in modern medicine, enabling precise detection and monitoring of various biochemical and physiological markers and parameters. The synergy between AI, ML, QSAR modeling, and the implementation of combinatorial and green chemistry methodologies is pivotal in driving the development of innovative products and PST in pharmaceutics. This interdisciplinary approach is crucial for creating solutions with reduced toxicity in pharmaceutical processes, thereby ensuring enhanced public safety and promoting the sustainability of environmental resources. By integrating these advanced methodologies, the pharmaceutical industry can achieve greater detection accuracy, efficiency in production of eco-friendly products, ultimately leading to safer pharmaceutics and a healthier planet.</div></div>\",\"PeriodicalId\":100682,\"journal\":{\"name\":\"Intelligent Pharmacy\",\"volume\":\"2 5\",\"pages\":\"Pages 598-608\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Intelligent Pharmacy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949866X24000650\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligent Pharmacy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949866X24000650","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Pharmaceutical advances: Integrating artificial intelligence in QSAR, combinatorial and green chemistry practices
The utilization of pharmaceuticals in medical and veterinary treatment has not only improved human and animal health but has also boosted food-production and economic welfare. However, the release of pharmaceuticals in the environment through various pathways, such as manufacturing, human excretion, and substandard disposal, can have detrimental effects on ecosystems and various biological entities associated with these systems. High levels of pharmaceutical residues have been detected further downstream of manufacturing facilities, and untreated veterinary medication leftovers can end up in waterbodies. Methods utilizing artificial intelligence (AI) and machine learning (ML) have been employed to establish connections between chemical structure and biological activity, referred to as quantitative structure–activity relationships (QSARs) for the compounds. QSAR models use chemical structures to predict hazardous activity when experimental data is lacking, thereby helping prioritize chemicals for testing and compilation. Combinatorial chemistry, by enabling high-throughput compound synthesis, accelerates the generation of targeted molecules for testing across various fields. Green chemistry helps in creating, designing, and implementing chemical products and procedures with the aim of minimizing or eradicating the generation and subsequent utilization of harmful substances. In addition, pharmaceutical sensor technologies (PST) are critical tools in modern medicine, enabling precise detection and monitoring of various biochemical and physiological markers and parameters. The synergy between AI, ML, QSAR modeling, and the implementation of combinatorial and green chemistry methodologies is pivotal in driving the development of innovative products and PST in pharmaceutics. This interdisciplinary approach is crucial for creating solutions with reduced toxicity in pharmaceutical processes, thereby ensuring enhanced public safety and promoting the sustainability of environmental resources. By integrating these advanced methodologies, the pharmaceutical industry can achieve greater detection accuracy, efficiency in production of eco-friendly products, ultimately leading to safer pharmaceutics and a healthier planet.