利用 Wi-Fi 技术确定隧道内人员的位置

IF 3.4 3区 工程技术 Q2 ENGINEERING, CIVIL Fire Safety Journal Pub Date : 2024-05-17 DOI:10.1016/j.firesaf.2024.104178
Håkan Frantzich , Karl Fridolf , Staffan Liljestrand , Alex Henningsson , Johan Lundin
{"title":"利用 Wi-Fi 技术确定隧道内人员的位置","authors":"Håkan Frantzich ,&nbsp;Karl Fridolf ,&nbsp;Staffan Liljestrand ,&nbsp;Alex Henningsson ,&nbsp;Johan Lundin","doi":"10.1016/j.firesaf.2024.104178","DOIUrl":null,"url":null,"abstract":"<div><p>The aim of the project is to investigate the possibility of using people's mobile phones to locate people in a tunnel environment using the mobile phone's Wi-Fi connection. In total, 39 different trials were carried out under different conditions in a road tunnel in Stockholm, Sweden. In the trials, the Wi-Fi-based predicted location has been compared with the actual location of the recruited 16 participants in the tunnel. The conditions include the number of people in a group, the number of available access points in the tunnel, whether the mobile phone has an active or passive connection, whether a person is moving or standing still and whether the mobile phone is held in the hand or is stored in the person's pocket. The results indicate that the mean value for the distance between actual and predicted locations is in the order of 20 m or less, which is higher than reported in other studies. Despite this, there is a good potential to locate individuals in a tunnel emergency as the distance between emergency exits is often much longer than the uncertainties in the predicted locations of people. Improving the location algorithms will possibly reduce the uncertainty of the predicted location.</p></div>","PeriodicalId":50445,"journal":{"name":"Fire Safety Journal","volume":"146 ","pages":"Article 104178"},"PeriodicalIF":3.4000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0379711224000912/pdfft?md5=8bf457d8777770caf2e613a546137087&pid=1-s2.0-S0379711224000912-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Locating people in tunnels using Wi-Fi technology\",\"authors\":\"Håkan Frantzich ,&nbsp;Karl Fridolf ,&nbsp;Staffan Liljestrand ,&nbsp;Alex Henningsson ,&nbsp;Johan Lundin\",\"doi\":\"10.1016/j.firesaf.2024.104178\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The aim of the project is to investigate the possibility of using people's mobile phones to locate people in a tunnel environment using the mobile phone's Wi-Fi connection. In total, 39 different trials were carried out under different conditions in a road tunnel in Stockholm, Sweden. In the trials, the Wi-Fi-based predicted location has been compared with the actual location of the recruited 16 participants in the tunnel. The conditions include the number of people in a group, the number of available access points in the tunnel, whether the mobile phone has an active or passive connection, whether a person is moving or standing still and whether the mobile phone is held in the hand or is stored in the person's pocket. The results indicate that the mean value for the distance between actual and predicted locations is in the order of 20 m or less, which is higher than reported in other studies. Despite this, there is a good potential to locate individuals in a tunnel emergency as the distance between emergency exits is often much longer than the uncertainties in the predicted locations of people. Improving the location algorithms will possibly reduce the uncertainty of the predicted location.</p></div>\",\"PeriodicalId\":50445,\"journal\":{\"name\":\"Fire Safety Journal\",\"volume\":\"146 \",\"pages\":\"Article 104178\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0379711224000912/pdfft?md5=8bf457d8777770caf2e613a546137087&pid=1-s2.0-S0379711224000912-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fire Safety Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0379711224000912\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fire Safety Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0379711224000912","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

该项目的目的是研究在隧道环境中使用手机的 Wi-Fi 连接来定位人的可能性。在瑞典斯德哥尔摩的一条公路隧道中,总共进行了 39 次不同条件下的试验。在这些试验中,基于 Wi-Fi 的预测位置与招募的 16 名参与者在隧道中的实际位置进行了比较。这些条件包括组内人数、隧道内可用接入点的数量、手机是主动连接还是被动连接、人是移动还是静止以及手机是拿在手里还是放在口袋里。结果表明,实际位置与预测位置之间距离的平均值约为 20 米或更少,高于其他研究报告。尽管如此,由于紧急出口之间的距离往往比预测的人员位置的不确定性要长得多,因此在隧道紧急情况下定位人员的潜力还是很大的。改进定位算法可能会降低预测位置的不确定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Locating people in tunnels using Wi-Fi technology

The aim of the project is to investigate the possibility of using people's mobile phones to locate people in a tunnel environment using the mobile phone's Wi-Fi connection. In total, 39 different trials were carried out under different conditions in a road tunnel in Stockholm, Sweden. In the trials, the Wi-Fi-based predicted location has been compared with the actual location of the recruited 16 participants in the tunnel. The conditions include the number of people in a group, the number of available access points in the tunnel, whether the mobile phone has an active or passive connection, whether a person is moving or standing still and whether the mobile phone is held in the hand or is stored in the person's pocket. The results indicate that the mean value for the distance between actual and predicted locations is in the order of 20 m or less, which is higher than reported in other studies. Despite this, there is a good potential to locate individuals in a tunnel emergency as the distance between emergency exits is often much longer than the uncertainties in the predicted locations of people. Improving the location algorithms will possibly reduce the uncertainty of the predicted location.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fire Safety Journal
Fire Safety Journal 工程技术-材料科学:综合
CiteScore
5.70
自引率
9.70%
发文量
153
审稿时长
60 days
期刊介绍: Fire Safety Journal is the leading publication dealing with all aspects of fire safety engineering. Its scope is purposefully wide, as it is deemed important to encourage papers from all sources within this multidisciplinary subject, thus providing a forum for its further development as a distinct engineering discipline. This is an essential step towards gaining a status equal to that enjoyed by the other engineering disciplines.
期刊最新文献
Numerical investigation of the influence of thermal runaway modelling on car park fire hazard and application to a Lithium-ion Manganese Oxide battery Analysis of air consumption and moving speed by firefighters during full-scale search & rescue experiments in a tunnel Numerical simulation of fire spread in a large-scale open CLT compartment Soot modeling in the numerical simulation of buoyant diffusion flames and fires—A review Experimental study to assess the impact of different connection types on the fire resistance of composite concrete-topped CLT slabs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1