非等温条件下加固的 CF/PEKK 薄复合材料层压板翘曲实验研究

IF 3.6 4区 材料科学 Q2 MATERIALS SCIENCE, COMPOSITES Journal of Thermoplastic Composite Materials Pub Date : 2024-05-25 DOI:10.1177/08927057241256936
Mariam A Al-Dhaheri, Muhammad S Irfan, Wesley J Cantwell, Imad Barsoum, Rehan Umer
{"title":"非等温条件下加固的 CF/PEKK 薄复合材料层压板翘曲实验研究","authors":"Mariam A Al-Dhaheri, Muhammad S Irfan, Wesley J Cantwell, Imad Barsoum, Rehan Umer","doi":"10.1177/08927057241256936","DOIUrl":null,"url":null,"abstract":"In this study, we investigated the effect of several processing conditions on warpage in carbon-fibre/PEKK composites manufactured under non-isothermal conditions. A multi-level factorial design of experiments was employed to study the effect of process and design parameters on warpage. Analysis-of-variance was used to establish the significance of the main factors as contributors to warpage. The number of plies and consolidation pressure were the factors that contributed significantly to warpage. A regression model was used to predict the warpage of panels consolidated using aluminium tooling, giving a reasonably good prediction of less than 18% difference. A panel with variable thickness was also manufactured, based on the prior observations, pressure and lay-up configurations were successfully altered to reduce warpage. DSC results showed that the warpage of semi-crystalline PEKK composites consolidated under non-isothermal conditions is a result of a differential in shrinkage across the laminate, as the degree of crystallinity varied with temperature and consolidation pressure.","PeriodicalId":17446,"journal":{"name":"Journal of Thermoplastic Composite Materials","volume":"40 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental investigation of warpage in thin CF/PEKK composite laminates consolidated under non-isothermal conditions\",\"authors\":\"Mariam A Al-Dhaheri, Muhammad S Irfan, Wesley J Cantwell, Imad Barsoum, Rehan Umer\",\"doi\":\"10.1177/08927057241256936\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we investigated the effect of several processing conditions on warpage in carbon-fibre/PEKK composites manufactured under non-isothermal conditions. A multi-level factorial design of experiments was employed to study the effect of process and design parameters on warpage. Analysis-of-variance was used to establish the significance of the main factors as contributors to warpage. The number of plies and consolidation pressure were the factors that contributed significantly to warpage. A regression model was used to predict the warpage of panels consolidated using aluminium tooling, giving a reasonably good prediction of less than 18% difference. A panel with variable thickness was also manufactured, based on the prior observations, pressure and lay-up configurations were successfully altered to reduce warpage. DSC results showed that the warpage of semi-crystalline PEKK composites consolidated under non-isothermal conditions is a result of a differential in shrinkage across the laminate, as the degree of crystallinity varied with temperature and consolidation pressure.\",\"PeriodicalId\":17446,\"journal\":{\"name\":\"Journal of Thermoplastic Composite Materials\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Thermoplastic Composite Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1177/08927057241256936\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermoplastic Composite Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/08927057241256936","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,我们研究了多种加工条件对在非等温条件下制造的碳纤维/PEKK 复合材料翘曲的影响。采用多级因子实验设计来研究工艺和设计参数对翘曲的影响。利用方差分析确定了导致翘曲的主要因素的重要性。层数和固结压力是导致翘曲的主要因素。使用回归模型预测了使用铝制工具加固的面板的翘曲,预测结果相当不错,差异小于 18%。根据先前的观察结果,还制造了厚度可变的面板,并成功地改变了压力和铺层配置以减少翘曲。DSC 结果表明,在非等温条件下加固的半结晶 PEKK 复合材料的翘曲是整个层压板收缩差异的结果,因为结晶度随温度和加固压力的变化而变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Experimental investigation of warpage in thin CF/PEKK composite laminates consolidated under non-isothermal conditions
In this study, we investigated the effect of several processing conditions on warpage in carbon-fibre/PEKK composites manufactured under non-isothermal conditions. A multi-level factorial design of experiments was employed to study the effect of process and design parameters on warpage. Analysis-of-variance was used to establish the significance of the main factors as contributors to warpage. The number of plies and consolidation pressure were the factors that contributed significantly to warpage. A regression model was used to predict the warpage of panels consolidated using aluminium tooling, giving a reasonably good prediction of less than 18% difference. A panel with variable thickness was also manufactured, based on the prior observations, pressure and lay-up configurations were successfully altered to reduce warpage. DSC results showed that the warpage of semi-crystalline PEKK composites consolidated under non-isothermal conditions is a result of a differential in shrinkage across the laminate, as the degree of crystallinity varied with temperature and consolidation pressure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Thermoplastic Composite Materials
Journal of Thermoplastic Composite Materials 工程技术-材料科学:复合
CiteScore
8.00
自引率
18.20%
发文量
104
审稿时长
5.9 months
期刊介绍: The Journal of Thermoplastic Composite Materials is a fully peer-reviewed international journal that publishes original research and review articles on polymers, nanocomposites, and particulate-, discontinuous-, and continuous-fiber-reinforced materials in the areas of processing, materials science, mechanics, durability, design, non destructive evaluation and manufacturing science. This journal is a member of the Committee on Publication Ethics (COPE).
期刊最新文献
Investigation of sizing materials for carbon fiber reinforced thermoplastic composites Exploring the strain rate influence on shear yield behavior of acrylonitrile-butadiene-styrene: Experimental and numerical study Thermoelastic analysis of FG-CNTRC cylindrical shells with various boundary conditions and temperature-dependent characteristics using quasi-3D higher-order shear deformation theory Influences of various thermoplastic veil interleaves upon carbon fiber-reinforced composites subjected to low-velocity impact Modelling and fabrication of flexible strain sensor using the 3D printing technology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1