{"title":"论大型语言模型的意外能力","authors":"Stefano Nolfi","doi":"10.1177/10597123241256754","DOIUrl":null,"url":null,"abstract":"Large Language Models (LLMs) are capable of displaying a wide range of abilities that are not directly connected with the task for which they are trained: predicting the next words of human-written texts. In this article, I review recent research investigating the cognitive abilities developed by LLMs and their relation to human cognition. I discuss the nature of the indirect process that leads to the acquisition of these cognitive abilities, their relation to other indirect processes, and the implications for the acquisition of integrated abilities. Moreover, I propose the factors that enable the development of abilities that are related only very indirectly to the proximal objective of the training task. Finally, I discuss whether the full set of capabilities that LLMs could possibly develop is predictable.","PeriodicalId":55552,"journal":{"name":"Adaptive Behavior","volume":"1 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Unexpected Abilities of Large Language Models\",\"authors\":\"Stefano Nolfi\",\"doi\":\"10.1177/10597123241256754\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Large Language Models (LLMs) are capable of displaying a wide range of abilities that are not directly connected with the task for which they are trained: predicting the next words of human-written texts. In this article, I review recent research investigating the cognitive abilities developed by LLMs and their relation to human cognition. I discuss the nature of the indirect process that leads to the acquisition of these cognitive abilities, their relation to other indirect processes, and the implications for the acquisition of integrated abilities. Moreover, I propose the factors that enable the development of abilities that are related only very indirectly to the proximal objective of the training task. Finally, I discuss whether the full set of capabilities that LLMs could possibly develop is predictable.\",\"PeriodicalId\":55552,\"journal\":{\"name\":\"Adaptive Behavior\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Adaptive Behavior\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1177/10597123241256754\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adaptive Behavior","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1177/10597123241256754","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
On the Unexpected Abilities of Large Language Models
Large Language Models (LLMs) are capable of displaying a wide range of abilities that are not directly connected with the task for which they are trained: predicting the next words of human-written texts. In this article, I review recent research investigating the cognitive abilities developed by LLMs and their relation to human cognition. I discuss the nature of the indirect process that leads to the acquisition of these cognitive abilities, their relation to other indirect processes, and the implications for the acquisition of integrated abilities. Moreover, I propose the factors that enable the development of abilities that are related only very indirectly to the proximal objective of the training task. Finally, I discuss whether the full set of capabilities that LLMs could possibly develop is predictable.
期刊介绍:
_Adaptive Behavior_ publishes articles on adaptive behaviour in living organisms and autonomous artificial systems. The official journal of the _International Society of Adaptive Behavior_, _Adaptive Behavior_, addresses topics such as perception and motor control, embodied cognition, learning and evolution, neural mechanisms, artificial intelligence, behavioral sequences, motivation and emotion, characterization of environments, decision making, collective and social behavior, navigation, foraging, communication and signalling.
Print ISSN: 1059-7123