Matthew Belyakov, M. Ryleigh Davis, Zachariah Milby, Ian Wong and Michael E. Brown
{"title":"天王星和海王星小卫星的 JWST 分光光度测定法","authors":"Matthew Belyakov, M. Ryleigh Davis, Zachariah Milby, Ian Wong and Michael E. Brown","doi":"10.3847/psj/ad3d55","DOIUrl":null,"url":null,"abstract":"We use 1.4–4.6 μm multiband photometry of the small inner Uranian and Neptunian satellites obtained with the James Webb Space Telescope’s near-infrared imager NIRCam to characterize their surface compositions. We find that the satellites of the ice giants have, to first order, similar compositions to one another, with a 3.0 μm absorption feature possibly associated with an O-H stretch, indicative of water ice or hydrated minerals. Additionally, the spectrophotometry for the small ice-giant satellites matches spectra of some Neptune Trojans and excited Kuiper Belt objects, suggesting shared properties. Future spectroscopy of these small satellites is necessary to identify and better constrain their specific surface compositions.","PeriodicalId":34524,"journal":{"name":"The Planetary Science Journal","volume":"5 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"JWST Spectrophotometry of the Small Satellites of Uranus and Neptune\",\"authors\":\"Matthew Belyakov, M. Ryleigh Davis, Zachariah Milby, Ian Wong and Michael E. Brown\",\"doi\":\"10.3847/psj/ad3d55\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We use 1.4–4.6 μm multiband photometry of the small inner Uranian and Neptunian satellites obtained with the James Webb Space Telescope’s near-infrared imager NIRCam to characterize their surface compositions. We find that the satellites of the ice giants have, to first order, similar compositions to one another, with a 3.0 μm absorption feature possibly associated with an O-H stretch, indicative of water ice or hydrated minerals. Additionally, the spectrophotometry for the small ice-giant satellites matches spectra of some Neptune Trojans and excited Kuiper Belt objects, suggesting shared properties. Future spectroscopy of these small satellites is necessary to identify and better constrain their specific surface compositions.\",\"PeriodicalId\":34524,\"journal\":{\"name\":\"The Planetary Science Journal\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Planetary Science Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3847/psj/ad3d55\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Planetary Science Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/psj/ad3d55","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
JWST Spectrophotometry of the Small Satellites of Uranus and Neptune
We use 1.4–4.6 μm multiband photometry of the small inner Uranian and Neptunian satellites obtained with the James Webb Space Telescope’s near-infrared imager NIRCam to characterize their surface compositions. We find that the satellites of the ice giants have, to first order, similar compositions to one another, with a 3.0 μm absorption feature possibly associated with an O-H stretch, indicative of water ice or hydrated minerals. Additionally, the spectrophotometry for the small ice-giant satellites matches spectra of some Neptune Trojans and excited Kuiper Belt objects, suggesting shared properties. Future spectroscopy of these small satellites is necessary to identify and better constrain their specific surface compositions.