纳米颗粒与微波技术相结合从碳酸盐岩中提取石油

IF 1.3 4区 工程技术 Q3 CHEMISTRY, ORGANIC Petroleum Chemistry Pub Date : 2024-05-23 DOI:10.1134/s0965544124010146
Rana Rasool Jalil, Ihab Sami Hassan
{"title":"纳米颗粒与微波技术相结合从碳酸盐岩中提取石油","authors":"Rana Rasool Jalil, Ihab Sami Hassan","doi":"10.1134/s0965544124010146","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>Core samples extraction is one of the main processes before routine core analyses. This process consumes time and chemical solvent so, it is necessary to find new techniques and materials to increase the efficiency of extraction method with less time and chemical consumption. The objective of this research project is to use the microwave and nanoparticle-assisted technologies in the extraction of oil in rock samples. The samples of carbonate reservoir rocks used in this research. Microwave heating can be a powerful tool for thermal treatments because many benefits can be achieved as proven by previous research. However, an increase in the efficiency of the nanoparticles assisted microwaves has been demonstrated in the extraction by adding the nano silica with different weight ratios to the solvent used in the experiments and exposing samples to the microwave effect under different powers then comparing the results with that of samples treated with microwave only. The experiments showed that the adding 0.1 wt % of nano silica reduced cleaning time to approximately 70% less than cleaning by using the microwave technique without nano silica; that can refer to the high efficiency of nano silica assistance in rock extraction; Furthermore, the application of multicriteria analysis has been used in the real case and shows that the most important criteria for cleaning efficiency were process control, rock properties and chemical consumption respectively. Also, it was found that the assisted microwave extractor using the toluene solvent—nano silica as a cleaning agent has priority over the other technique for cleaning plug samples.</p>","PeriodicalId":725,"journal":{"name":"Petroleum Chemistry","volume":"49 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combination of Nanoparticles and Microwave Technologies for Extraction of Oil from Carbonate Rock\",\"authors\":\"Rana Rasool Jalil, Ihab Sami Hassan\",\"doi\":\"10.1134/s0965544124010146\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>Core samples extraction is one of the main processes before routine core analyses. This process consumes time and chemical solvent so, it is necessary to find new techniques and materials to increase the efficiency of extraction method with less time and chemical consumption. The objective of this research project is to use the microwave and nanoparticle-assisted technologies in the extraction of oil in rock samples. The samples of carbonate reservoir rocks used in this research. Microwave heating can be a powerful tool for thermal treatments because many benefits can be achieved as proven by previous research. However, an increase in the efficiency of the nanoparticles assisted microwaves has been demonstrated in the extraction by adding the nano silica with different weight ratios to the solvent used in the experiments and exposing samples to the microwave effect under different powers then comparing the results with that of samples treated with microwave only. The experiments showed that the adding 0.1 wt % of nano silica reduced cleaning time to approximately 70% less than cleaning by using the microwave technique without nano silica; that can refer to the high efficiency of nano silica assistance in rock extraction; Furthermore, the application of multicriteria analysis has been used in the real case and shows that the most important criteria for cleaning efficiency were process control, rock properties and chemical consumption respectively. Also, it was found that the assisted microwave extractor using the toluene solvent—nano silica as a cleaning agent has priority over the other technique for cleaning plug samples.</p>\",\"PeriodicalId\":725,\"journal\":{\"name\":\"Petroleum Chemistry\",\"volume\":\"49 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Petroleum Chemistry\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1134/s0965544124010146\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, ORGANIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petroleum Chemistry","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1134/s0965544124010146","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0

摘要

摘要岩心样品提取是常规岩心分析前的主要过程之一。这一过程需要消耗时间和化学溶剂,因此有必要寻找新技术和新材料,以提高提取方法的效率,减少时间和化学消耗。本研究项目的目标是利用微波和纳米粒子辅助技术提取岩石样本中的石油。本研究使用的样品为碳酸盐岩储层岩石。微波加热是一种强大的热处理工具,因为以往的研究证明,微波加热可以带来很多好处。不过,通过在实验所用溶剂中添加不同重量比的纳米二氧化硅,并在不同功率下将样品置于微波效应下,然后将结果与仅用微波处理的样品进行比较,纳米粒子辅助微波在萃取中的效率得到了提高。实验结果表明,添加 0.1 wt % 的纳米二氧化硅后,与不添加纳米二氧化硅的微波技术相比,清洁时间缩短了约 70%;这说明纳米二氧化硅在岩石提取中的辅助效率很高;此外,在实际案例中应用了多标准分析,结果表明,清洁效率的最重要标准分别是工艺控制、岩石特性和化学品消耗。此外,研究还发现,使用甲苯溶剂-纳米二氧化硅作为清洗剂的辅助微波萃取器在清洗塞子样品时优先于其他技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Combination of Nanoparticles and Microwave Technologies for Extraction of Oil from Carbonate Rock

Abstract

Core samples extraction is one of the main processes before routine core analyses. This process consumes time and chemical solvent so, it is necessary to find new techniques and materials to increase the efficiency of extraction method with less time and chemical consumption. The objective of this research project is to use the microwave and nanoparticle-assisted technologies in the extraction of oil in rock samples. The samples of carbonate reservoir rocks used in this research. Microwave heating can be a powerful tool for thermal treatments because many benefits can be achieved as proven by previous research. However, an increase in the efficiency of the nanoparticles assisted microwaves has been demonstrated in the extraction by adding the nano silica with different weight ratios to the solvent used in the experiments and exposing samples to the microwave effect under different powers then comparing the results with that of samples treated with microwave only. The experiments showed that the adding 0.1 wt % of nano silica reduced cleaning time to approximately 70% less than cleaning by using the microwave technique without nano silica; that can refer to the high efficiency of nano silica assistance in rock extraction; Furthermore, the application of multicriteria analysis has been used in the real case and shows that the most important criteria for cleaning efficiency were process control, rock properties and chemical consumption respectively. Also, it was found that the assisted microwave extractor using the toluene solvent—nano silica as a cleaning agent has priority over the other technique for cleaning plug samples.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Petroleum Chemistry
Petroleum Chemistry 工程技术-工程:化工
CiteScore
2.50
自引率
21.40%
发文量
102
审稿时长
6-12 weeks
期刊介绍: Petroleum Chemistry (Neftekhimiya), founded in 1961, offers original papers on and reviews of theoretical and experimental studies concerned with current problems of petroleum chemistry and processing such as chemical composition of crude oils and natural gas liquids; petroleum refining (cracking, hydrocracking, and catalytic reforming); catalysts for petrochemical processes (hydrogenation, isomerization, oxidation, hydroformylation, etc.); activation and catalytic transformation of hydrocarbons and other components of petroleum, natural gas, and other complex organic mixtures; new petrochemicals including lubricants and additives; environmental problems; and information on scientific meetings relevant to these areas. Petroleum Chemistry publishes articles on these topics from members of the scientific community of the former Soviet Union.
期刊最新文献
Estimating the Petrophysical Properties Cutoff Values for Net Pay Determination: A Case Study of Khasib Formation, Southern Iraq Evaluation of Petrophysical Properties of Mishrif, Rumiala, Ahmadi, and Mauddud Formations in Nasiriya Oil Field—Middle of Iraq Design of Hybrid Porous Materials for Obtaining and Storage of Gas Hydrates Synthesis and Properties of a Low-Viscosity and Acid-Resistant Retarding Agent Fracture Pressure Prediction in Carbonate Reservoir Using Artificial Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1