火山石英熔体包裹体周围记录的应力晶体历史

IF 3.5 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Contributions to Mineralogy and Petrology Pub Date : 2024-05-25 DOI:10.1007/s00410-024-02126-z
Tyler Cadena, Michael Manga, Kenneth Befus, Nobumichi Tamura
{"title":"火山石英熔体包裹体周围记录的应力晶体历史","authors":"Tyler Cadena,&nbsp;Michael Manga,&nbsp;Kenneth Befus,&nbsp;Nobumichi Tamura","doi":"10.1007/s00410-024-02126-z","DOIUrl":null,"url":null,"abstract":"<div><p>Magma ascent and eruption are driven by a set of internally and externally generated stresses that act upon the magma. We present microstructural maps around melt inclusions in quartz crystals from six large rhyolitic eruptions using synchrotron Laue X-ray microdiffraction to quantify elastic residual strain and stress. We measure plastic strain using average diffraction peak width and lattice misorientation, highlighting dislocations and subgrain boundaries. Quartz crystals across studied magma systems preserve similar and relatively small magnitudes of elastic residual stress (mean 53–135 MPa, median 46–116 MPa) in comparison to the strength of quartz (~ 10 GPa). However, the distribution of strain in the lattice around inclusions varies between samples. We hypothesize that dislocation and twin systems may be established during compaction of crystal-rich magma, which affects the magnitude and distribution of preserved elastic strains. Given the lack of stress-free haloes around faceted inclusions, we conclude that most residual strain and stress was imparted after inclusion faceting. Fragmentation may be one of the final strain events that superimposes stresses of ~ 100 MPa across all studied crystals. Overall, volcanic quartz crystals preserve complex, overprinted deformation textures indicating that quartz crystals have prolonged deformation histories throughout storage, fragmentation, and eruption.</p></div>","PeriodicalId":526,"journal":{"name":"Contributions to Mineralogy and Petrology","volume":"179 6","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00410-024-02126-z.pdf","citationCount":"0","resultStr":"{\"title\":\"Stressful crystal histories recorded around melt inclusions in volcanic quartz\",\"authors\":\"Tyler Cadena,&nbsp;Michael Manga,&nbsp;Kenneth Befus,&nbsp;Nobumichi Tamura\",\"doi\":\"10.1007/s00410-024-02126-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Magma ascent and eruption are driven by a set of internally and externally generated stresses that act upon the magma. We present microstructural maps around melt inclusions in quartz crystals from six large rhyolitic eruptions using synchrotron Laue X-ray microdiffraction to quantify elastic residual strain and stress. We measure plastic strain using average diffraction peak width and lattice misorientation, highlighting dislocations and subgrain boundaries. Quartz crystals across studied magma systems preserve similar and relatively small magnitudes of elastic residual stress (mean 53–135 MPa, median 46–116 MPa) in comparison to the strength of quartz (~ 10 GPa). However, the distribution of strain in the lattice around inclusions varies between samples. We hypothesize that dislocation and twin systems may be established during compaction of crystal-rich magma, which affects the magnitude and distribution of preserved elastic strains. Given the lack of stress-free haloes around faceted inclusions, we conclude that most residual strain and stress was imparted after inclusion faceting. Fragmentation may be one of the final strain events that superimposes stresses of ~ 100 MPa across all studied crystals. Overall, volcanic quartz crystals preserve complex, overprinted deformation textures indicating that quartz crystals have prolonged deformation histories throughout storage, fragmentation, and eruption.</p></div>\",\"PeriodicalId\":526,\"journal\":{\"name\":\"Contributions to Mineralogy and Petrology\",\"volume\":\"179 6\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00410-024-02126-z.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Contributions to Mineralogy and Petrology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00410-024-02126-z\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Contributions to Mineralogy and Petrology","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s00410-024-02126-z","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

岩浆的上升和喷发是由一系列作用于岩浆的内部和外部应力驱动的。我们展示了六次大型流纹岩喷发中石英晶体中熔融包裹体周围的微观结构图,利用同步辐射 Laue X 射线微衍射来量化弹性残余应变和应力。我们利用平均衍射峰宽度和晶格错向测量塑性应变,突出位错和亚晶粒边界。与石英的强度(约 10 GPa)相比,所研究的岩浆系统中的石英晶体保留了相似且相对较小的弹性残余应力(平均值为 53-135 MPa,中位值为 46-116 MPa)。然而,夹杂物周围晶格中的应变分布因样品而异。我们推测,位错和孪晶系统可能是在富含晶体的岩浆压实过程中建立的,从而影响了所保存的弹性应变的大小和分布。鉴于刻面包裹体周围缺乏无应力晕,我们得出结论,大部分残余应变和应力是在包裹体刻面之后产生的。碎裂可能是最后的应变事件之一,它在所有研究的晶体中叠加了约 100 兆帕的应力。总体而言,火山石英晶体保留了复杂的叠加变形纹理,表明石英晶体在储存、破碎和喷发过程中经历了漫长的变形历史。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Stressful crystal histories recorded around melt inclusions in volcanic quartz

Magma ascent and eruption are driven by a set of internally and externally generated stresses that act upon the magma. We present microstructural maps around melt inclusions in quartz crystals from six large rhyolitic eruptions using synchrotron Laue X-ray microdiffraction to quantify elastic residual strain and stress. We measure plastic strain using average diffraction peak width and lattice misorientation, highlighting dislocations and subgrain boundaries. Quartz crystals across studied magma systems preserve similar and relatively small magnitudes of elastic residual stress (mean 53–135 MPa, median 46–116 MPa) in comparison to the strength of quartz (~ 10 GPa). However, the distribution of strain in the lattice around inclusions varies between samples. We hypothesize that dislocation and twin systems may be established during compaction of crystal-rich magma, which affects the magnitude and distribution of preserved elastic strains. Given the lack of stress-free haloes around faceted inclusions, we conclude that most residual strain and stress was imparted after inclusion faceting. Fragmentation may be one of the final strain events that superimposes stresses of ~ 100 MPa across all studied crystals. Overall, volcanic quartz crystals preserve complex, overprinted deformation textures indicating that quartz crystals have prolonged deformation histories throughout storage, fragmentation, and eruption.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Contributions to Mineralogy and Petrology
Contributions to Mineralogy and Petrology 地学-地球化学与地球物理
CiteScore
6.50
自引率
5.70%
发文量
94
审稿时长
1.7 months
期刊介绍: Contributions to Mineralogy and Petrology is an international journal that accepts high quality research papers in the fields of igneous and metamorphic petrology, geochemistry and mineralogy. Topics of interest include: major element, trace element and isotope geochemistry, geochronology, experimental petrology, igneous and metamorphic petrology, mineralogy, major and trace element mineral chemistry and thermodynamic modeling of petrologic and geochemical processes.
期刊最新文献
Magmatic evolution and magma chamber conditions of the Alpehué tephra from Sollipulli Volcano, Andean Southern Volcanic Zone, Chile/Argentina Estimation of missing third-law standard entropy of apatite supergroup minerals using the optimized Volume-based Thermodynamics A 3-billion-year history of magmatism, metamorphism, and metasomatism recorded by granulite-facies xenoliths from central Montana, USA The chemical and Sm–Nd isotopic behaviour of accessory minerals in metasediments along the LP-HT Chugach Metamorphic Complex (Alaska) W-Fe isotopes argue against OIB-like basalts in Inner Mongolia originating from primordial peridotite mantle
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1