空间网络模型的超定位

IF 2.1 2区 数学 Q1 MATHEMATICS, APPLIED Numerische Mathematik Pub Date : 2024-05-21 DOI:10.1007/s00211-024-01410-1
Moritz Hauck, Axel Målqvist
{"title":"空间网络模型的超定位","authors":"Moritz Hauck, Axel Målqvist","doi":"10.1007/s00211-024-01410-1","DOIUrl":null,"url":null,"abstract":"<p>Spatial network models are used as a simplified discrete representation in a wide range of applications, e.g., flow in blood vessels, elasticity of fiber based materials, and pore network models of porous materials. Nevertheless, the resulting linear systems are typically large and poorly conditioned and their numerical solution is challenging. This paper proposes a numerical homogenization technique for spatial network models which is based on the super-localized orthogonal decomposition (SLOD), recently introduced for elliptic multiscale partial differential equations. It provides accurate coarse solution spaces with approximation properties independent of the smoothness of the material data. A unique selling point of the SLOD is that it constructs an almost local basis of these coarse spaces, requiring less computations on the fine scale and achieving improved sparsity on the coarse scale compared to other state-of-the-art methods. We provide an a posteriori analysis of the proposed method and numerically confirm the method’s unique localization properties. In addition, we show its applicability also for high-contrast channeled material data.\n</p>","PeriodicalId":49733,"journal":{"name":"Numerische Mathematik","volume":"48 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Super-localization of spatial network models\",\"authors\":\"Moritz Hauck, Axel Målqvist\",\"doi\":\"10.1007/s00211-024-01410-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Spatial network models are used as a simplified discrete representation in a wide range of applications, e.g., flow in blood vessels, elasticity of fiber based materials, and pore network models of porous materials. Nevertheless, the resulting linear systems are typically large and poorly conditioned and their numerical solution is challenging. This paper proposes a numerical homogenization technique for spatial network models which is based on the super-localized orthogonal decomposition (SLOD), recently introduced for elliptic multiscale partial differential equations. It provides accurate coarse solution spaces with approximation properties independent of the smoothness of the material data. A unique selling point of the SLOD is that it constructs an almost local basis of these coarse spaces, requiring less computations on the fine scale and achieving improved sparsity on the coarse scale compared to other state-of-the-art methods. We provide an a posteriori analysis of the proposed method and numerically confirm the method’s unique localization properties. In addition, we show its applicability also for high-contrast channeled material data.\\n</p>\",\"PeriodicalId\":49733,\"journal\":{\"name\":\"Numerische Mathematik\",\"volume\":\"48 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Numerische Mathematik\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00211-024-01410-1\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerische Mathematik","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00211-024-01410-1","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

空间网络模型作为一种简化的离散表示法被广泛应用于各种领域,例如血管中的流动、纤维材料的弹性以及多孔材料的孔隙网络模型。然而,由此产生的线性系统通常较大且条件较差,其数值求解具有挑战性。本文针对空间网络模型提出了一种基于超局部正交分解(SLOD)的数值均质化技术,SLOD 是最近针对椭圆多尺度偏微分方程提出的。它提供了精确的粗解空间,其近似特性与材料数据的平滑度无关。SLOD 的一个独特卖点是,它为这些粗解空间构建了一个几乎是局部的基础,与其他最先进的方法相比,它在精细尺度上所需的计算量更少,而在粗解尺度上则实现了更高的稀疏性。我们对提出的方法进行了后验分析,并从数值上证实了该方法独特的本地化特性。此外,我们还展示了该方法对高对比度通道材料数据的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Super-localization of spatial network models

Spatial network models are used as a simplified discrete representation in a wide range of applications, e.g., flow in blood vessels, elasticity of fiber based materials, and pore network models of porous materials. Nevertheless, the resulting linear systems are typically large and poorly conditioned and their numerical solution is challenging. This paper proposes a numerical homogenization technique for spatial network models which is based on the super-localized orthogonal decomposition (SLOD), recently introduced for elliptic multiscale partial differential equations. It provides accurate coarse solution spaces with approximation properties independent of the smoothness of the material data. A unique selling point of the SLOD is that it constructs an almost local basis of these coarse spaces, requiring less computations on the fine scale and achieving improved sparsity on the coarse scale compared to other state-of-the-art methods. We provide an a posteriori analysis of the proposed method and numerically confirm the method’s unique localization properties. In addition, we show its applicability also for high-contrast channeled material data.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Numerische Mathematik
Numerische Mathematik 数学-应用数学
CiteScore
4.10
自引率
4.80%
发文量
72
审稿时长
6-12 weeks
期刊介绍: Numerische Mathematik publishes papers of the very highest quality presenting significantly new and important developments in all areas of Numerical Analysis. "Numerical Analysis" is here understood in its most general sense, as that part of Mathematics that covers: 1. The conception and mathematical analysis of efficient numerical schemes actually used on computers (the "core" of Numerical Analysis) 2. Optimization and Control Theory 3. Mathematical Modeling 4. The mathematical aspects of Scientific Computing
期刊最新文献
The pressure-wired Stokes element: a mesh-robust version of the Scott–Vogelius element Mathematical analysis of a finite difference method for inhomogeneous incompressible Navier–Stokes equations A moment approach for entropy solutions of parameter-dependent hyperbolic conservation laws Circuits of ferromagnetic nanowires Efficient approximation of high-frequency Helmholtz solutions by Gaussian coherent states
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1