{"title":"关于带有对流传热的非局部两相流","authors":"Šárka Nečasová, John Sebastian H. Simon","doi":"10.1007/s00332-024-10042-6","DOIUrl":null,"url":null,"abstract":"<p>We study a system describing the dynamics of a two-phase flow of incompressible viscous fluids influenced by the convective heat transfer of Caginalp-type. The separation of the fluids is expressed by the order parameter which is of diffuse interface and is known as the Cahn–Hilliard model. We shall consider a nonlocal version of the Cahn–Hilliard model which replaces the gradient term in the free energy functional into a spatial convolution operator acting on the order parameter and incorporate with it a potential that is assumed to satisfy an arbitrary polynomial growth. The order parameter is influenced by the fluid velocity by means of convection; the temperature affects the interface via a modification of the Landau–Ginzburg free energy. The fluid is governed by the Navier–Stokes equations which is affected by the order parameter and the temperature by virtue of the capillarity between the two fluids. The temperature on the other hand satisfies a parabolic equation that considers latent heat due to phase transition and is influenced by the fluid via convection. The goal of this paper is to prove the global existence of weak solutions and show that, for an appropriate choice of sequence of convolutional kernels, the solutions of the nonlocal system converge to its local version.</p>","PeriodicalId":50111,"journal":{"name":"Journal of Nonlinear Science","volume":"3 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On a Nonlocal Two-Phase Flow with Convective Heat Transfer\",\"authors\":\"Šárka Nečasová, John Sebastian H. Simon\",\"doi\":\"10.1007/s00332-024-10042-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study a system describing the dynamics of a two-phase flow of incompressible viscous fluids influenced by the convective heat transfer of Caginalp-type. The separation of the fluids is expressed by the order parameter which is of diffuse interface and is known as the Cahn–Hilliard model. We shall consider a nonlocal version of the Cahn–Hilliard model which replaces the gradient term in the free energy functional into a spatial convolution operator acting on the order parameter and incorporate with it a potential that is assumed to satisfy an arbitrary polynomial growth. The order parameter is influenced by the fluid velocity by means of convection; the temperature affects the interface via a modification of the Landau–Ginzburg free energy. The fluid is governed by the Navier–Stokes equations which is affected by the order parameter and the temperature by virtue of the capillarity between the two fluids. The temperature on the other hand satisfies a parabolic equation that considers latent heat due to phase transition and is influenced by the fluid via convection. The goal of this paper is to prove the global existence of weak solutions and show that, for an appropriate choice of sequence of convolutional kernels, the solutions of the nonlocal system converge to its local version.</p>\",\"PeriodicalId\":50111,\"journal\":{\"name\":\"Journal of Nonlinear Science\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nonlinear Science\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00332-024-10042-6\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nonlinear Science","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00332-024-10042-6","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
On a Nonlocal Two-Phase Flow with Convective Heat Transfer
We study a system describing the dynamics of a two-phase flow of incompressible viscous fluids influenced by the convective heat transfer of Caginalp-type. The separation of the fluids is expressed by the order parameter which is of diffuse interface and is known as the Cahn–Hilliard model. We shall consider a nonlocal version of the Cahn–Hilliard model which replaces the gradient term in the free energy functional into a spatial convolution operator acting on the order parameter and incorporate with it a potential that is assumed to satisfy an arbitrary polynomial growth. The order parameter is influenced by the fluid velocity by means of convection; the temperature affects the interface via a modification of the Landau–Ginzburg free energy. The fluid is governed by the Navier–Stokes equations which is affected by the order parameter and the temperature by virtue of the capillarity between the two fluids. The temperature on the other hand satisfies a parabolic equation that considers latent heat due to phase transition and is influenced by the fluid via convection. The goal of this paper is to prove the global existence of weak solutions and show that, for an appropriate choice of sequence of convolutional kernels, the solutions of the nonlocal system converge to its local version.
期刊介绍:
The mission of the Journal of Nonlinear Science is to publish papers that augment the fundamental ways we describe, model, and predict nonlinear phenomena. Papers should make an original contribution to at least one technical area and should in addition illuminate issues beyond that area''s boundaries. Even excellent papers in a narrow field of interest are not appropriate for the journal. Papers can be oriented toward theory, experimentation, algorithms, numerical simulations, or applications as long as the work is creative and sound. Excessively theoretical work in which the application to natural phenomena is not apparent (at least through similar techniques) or in which the development of fundamental methodologies is not present is probably not appropriate. In turn, papers oriented toward experimentation, numerical simulations, or applications must not simply report results without an indication of what a theoretical explanation might be.
All papers should be submitted in English and must meet common standards of usage and grammar. In addition, because ours is a multidisciplinary subject, at minimum the introduction to the paper should be readable to a broad range of scientists and not only to specialists in the subject area. The scientific importance of the paper and its conclusions should be made clear in the introduction-this means that not only should the problem you study be presented, but its historical background, its relevance to science and technology, the specific phenomena it can be used to describe or investigate, and the outstanding open issues related to it should be explained. Failure to achieve this could disqualify the paper.