基于 FPTO 方法的热机械耦合结构多目标拓扑优化设计

IF 2 3区 工程技术 Q2 ENGINEERING, MULTIDISCIPLINARY Optimization and Engineering Pub Date : 2024-05-25 DOI:10.1007/s11081-024-09890-8
Dengfeng Huang, Shunshun Zhou, Xiaolei Yan
{"title":"基于 FPTO 方法的热机械耦合结构多目标拓扑优化设计","authors":"Dengfeng Huang, Shunshun Zhou, Xiaolei Yan","doi":"10.1007/s11081-024-09890-8","DOIUrl":null,"url":null,"abstract":"<p>The coupling problem between the structural field and temperature field is widely encountered in engineering applications and holds significant research importance. In the context of thermo-mechanical coupling topology optimization, the thermal stress resulting from the temperature field can cause structural deformation, consequently impacting the structural performance. Therefore, it is crucial to conduct rational optimization designs to ensure favorable mechanical behavior and heat dissipation. This study utilizes thermo-mechanical coupling theory to perform multi-objective topology optimization, aiming to minimize compliance and heat dissipation weakness concurrently, thereby obtaining a more comprehensive design scheme with enhanced overall performance. Initially, a topological optimization model for the coupled thermo-mechanical problem is established. Subsequently, the objective functions of structural compliance and heat dissipation weakness are normalized, and their sensitivities are derived. Next, a multi-load case and multi-objective optimization algorithm based on Floating Projection Topological Optimization (FPTO) is proposed to minimize both structural compliance and heat dissipation weakness. By comparing the topological configuration and objective function values obtained using the Solid Isotropic Material with Penalization (SIMP) method, it is evident that the FPTO method achieves clear and smooth boundaries in the topological configuration, while yielding smaller objective function values. Additionally, under appropriate trade-off factors, the FPTO method achieves a more balanced topological structure and optimizes material distribution without increasing the structural volume, thus enabling lightweight structures, providing novel ideas and methods for engineering applications.</p>","PeriodicalId":56141,"journal":{"name":"Optimization and Engineering","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-objective topology optimization design of thermal-mechanical coupling structure based on FPTO method\",\"authors\":\"Dengfeng Huang, Shunshun Zhou, Xiaolei Yan\",\"doi\":\"10.1007/s11081-024-09890-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The coupling problem between the structural field and temperature field is widely encountered in engineering applications and holds significant research importance. In the context of thermo-mechanical coupling topology optimization, the thermal stress resulting from the temperature field can cause structural deformation, consequently impacting the structural performance. Therefore, it is crucial to conduct rational optimization designs to ensure favorable mechanical behavior and heat dissipation. This study utilizes thermo-mechanical coupling theory to perform multi-objective topology optimization, aiming to minimize compliance and heat dissipation weakness concurrently, thereby obtaining a more comprehensive design scheme with enhanced overall performance. Initially, a topological optimization model for the coupled thermo-mechanical problem is established. Subsequently, the objective functions of structural compliance and heat dissipation weakness are normalized, and their sensitivities are derived. Next, a multi-load case and multi-objective optimization algorithm based on Floating Projection Topological Optimization (FPTO) is proposed to minimize both structural compliance and heat dissipation weakness. By comparing the topological configuration and objective function values obtained using the Solid Isotropic Material with Penalization (SIMP) method, it is evident that the FPTO method achieves clear and smooth boundaries in the topological configuration, while yielding smaller objective function values. Additionally, under appropriate trade-off factors, the FPTO method achieves a more balanced topological structure and optimizes material distribution without increasing the structural volume, thus enabling lightweight structures, providing novel ideas and methods for engineering applications.</p>\",\"PeriodicalId\":56141,\"journal\":{\"name\":\"Optimization and Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optimization and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11081-024-09890-8\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optimization and Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11081-024-09890-8","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

结构场与温度场之间的耦合问题在工程应用中广泛存在,具有重要的研究意义。在热机械耦合拓扑优化中,温度场产生的热应力会导致结构变形,进而影响结构性能。因此,进行合理的优化设计以确保良好的机械性能和散热性能至关重要。本研究利用热机械耦合理论进行多目标拓扑优化,旨在同时最小化顺应性和散热弱点,从而获得更全面的设计方案,提高整体性能。首先,建立了热机械耦合问题的拓扑优化模型。随后,对结构顺应性和散热弱点的目标函数进行了归一化处理,并得出了它们的敏感性。接着,提出了一种基于浮动投影拓扑优化(FPTO)的多负载情况和多目标优化算法,以最小化结构顺应性和散热弱点。通过比较拓扑结构和使用各向同性固体材料(Solid Isotropic Material with Penalization,SIMP)方法获得的目标函数值,可以看出 FPTO 方法在拓扑结构中实现了清晰平滑的边界,同时获得了较小的目标函数值。此外,在适当的权衡因素下,FPTO 方法能获得更均衡的拓扑结构,并在不增加结构体积的情况下优化材料分布,从而实现轻质结构,为工程应用提供了新的思路和方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-objective topology optimization design of thermal-mechanical coupling structure based on FPTO method

The coupling problem between the structural field and temperature field is widely encountered in engineering applications and holds significant research importance. In the context of thermo-mechanical coupling topology optimization, the thermal stress resulting from the temperature field can cause structural deformation, consequently impacting the structural performance. Therefore, it is crucial to conduct rational optimization designs to ensure favorable mechanical behavior and heat dissipation. This study utilizes thermo-mechanical coupling theory to perform multi-objective topology optimization, aiming to minimize compliance and heat dissipation weakness concurrently, thereby obtaining a more comprehensive design scheme with enhanced overall performance. Initially, a topological optimization model for the coupled thermo-mechanical problem is established. Subsequently, the objective functions of structural compliance and heat dissipation weakness are normalized, and their sensitivities are derived. Next, a multi-load case and multi-objective optimization algorithm based on Floating Projection Topological Optimization (FPTO) is proposed to minimize both structural compliance and heat dissipation weakness. By comparing the topological configuration and objective function values obtained using the Solid Isotropic Material with Penalization (SIMP) method, it is evident that the FPTO method achieves clear and smooth boundaries in the topological configuration, while yielding smaller objective function values. Additionally, under appropriate trade-off factors, the FPTO method achieves a more balanced topological structure and optimizes material distribution without increasing the structural volume, thus enabling lightweight structures, providing novel ideas and methods for engineering applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Optimization and Engineering
Optimization and Engineering 工程技术-工程:综合
CiteScore
4.80
自引率
14.30%
发文量
73
审稿时长
>12 weeks
期刊介绍: Optimization and Engineering is a multidisciplinary journal; its primary goal is to promote the application of optimization methods in the general area of engineering sciences. We expect submissions to OPTE not only to make a significant optimization contribution but also to impact a specific engineering application. Topics of Interest: -Optimization: All methods and algorithms of mathematical optimization, including blackbox and derivative-free optimization, continuous optimization, discrete optimization, global optimization, linear and conic optimization, multiobjective optimization, PDE-constrained optimization & control, and stochastic optimization. Numerical and implementation issues, optimization software, benchmarking, and case studies. -Engineering Sciences: Aerospace engineering, biomedical engineering, chemical & process engineering, civil, environmental, & architectural engineering, electrical engineering, financial engineering, geosciences, healthcare engineering, industrial & systems engineering, mechanical engineering & MDO, and robotics.
期刊最新文献
Optimizing compressor rotor–stator assembly process to minimize clearance non-uniformity An integrated economic production quantity model with shortages considering energy utilization in production and warehousing Optimization of the composition of residential buildings in a renewable energy community based on monitored data Optimized dispatch and component sizing for a nuclear-multi-effect distillation integrated energy system using thermal energy storage The multi-class Stackelberg prediction game with least squares loss
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1