Jason W. Johns, Ya Min, Evangeline S. Ballerini, Elena M. Kramer, Scott A. Hodges
{"title":"Aquilegia jonesii 退化雄蕊的丧失揭示了雄蕊-退化雄蕊边界的消逝","authors":"Jason W. Johns, Ya Min, Evangeline S. Ballerini, Elena M. Kramer, Scott A. Hodges","doi":"10.1186/s13227-024-00225-3","DOIUrl":null,"url":null,"abstract":"The modification of fertile stamens into sterile staminodes has occurred independently many times in the flowering plant lineage. In the genus Aquilegia (columbine) and its closest relatives, the two stamen whorls closest to the carpels have been converted to staminodes. In Aquilegia, the only genetic analyses of staminode development have been reverse genetic approaches revealing that B-class floral identity genes are involved. A. jonesii, the only species of columbine where staminodes have reverted to fertile stamens, allows us to explore the genetic architecture of staminode development using a forward genetic approach. We performed QTL analysis using an outcrossed F2 population between A. jonesii and a horticultural variety that makes fully developed staminodes, A. coerulea ‘Origami’. Our results reveal a polygenic basis for staminode loss where the two staminode whorls are under some level of independent control. We also discovered that staminode loss in A. jonesii is not complete, in which staminode-like traits sometimes occur in the inner fertile stamens, potentially representing a fading boundary of gene expression. The QTLs identified in this study provide a map to guide future reverse genetic and functional studies examining the genetic basis and evolutionary significance of this trait.","PeriodicalId":49076,"journal":{"name":"Evodevo","volume":"19 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Loss of staminodes in Aquilegia jonesii reveals a fading stamen–staminode boundary\",\"authors\":\"Jason W. Johns, Ya Min, Evangeline S. Ballerini, Elena M. Kramer, Scott A. Hodges\",\"doi\":\"10.1186/s13227-024-00225-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The modification of fertile stamens into sterile staminodes has occurred independently many times in the flowering plant lineage. In the genus Aquilegia (columbine) and its closest relatives, the two stamen whorls closest to the carpels have been converted to staminodes. In Aquilegia, the only genetic analyses of staminode development have been reverse genetic approaches revealing that B-class floral identity genes are involved. A. jonesii, the only species of columbine where staminodes have reverted to fertile stamens, allows us to explore the genetic architecture of staminode development using a forward genetic approach. We performed QTL analysis using an outcrossed F2 population between A. jonesii and a horticultural variety that makes fully developed staminodes, A. coerulea ‘Origami’. Our results reveal a polygenic basis for staminode loss where the two staminode whorls are under some level of independent control. We also discovered that staminode loss in A. jonesii is not complete, in which staminode-like traits sometimes occur in the inner fertile stamens, potentially representing a fading boundary of gene expression. The QTLs identified in this study provide a map to guide future reverse genetic and functional studies examining the genetic basis and evolutionary significance of this trait.\",\"PeriodicalId\":49076,\"journal\":{\"name\":\"Evodevo\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Evodevo\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13227-024-00225-3\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"DEVELOPMENTAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evodevo","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13227-024-00225-3","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
可育雄蕊变为不育退化雄蕊的现象在有花植物中多次独立出现。在水龙属(秋兰)及其近缘植物中,最靠近心皮的两轮雄蕊被转化为退化雄蕊。在水生植物中,对退化雄蕊发育的唯一遗传分析是反向遗传方法,揭示了 B 级花特征基因的参与。A.jonesii是唯一一个退化雄蕊变为可育雄蕊的秋兰品种,因此我们可以利用正向遗传方法探索退化雄蕊发育的遗传结构。我们利用 A. jonesii 和一个能使退化雄蕊完全发育的园艺品种 A. coerulea 'Origami' 之间的外交 F2 群体进行了 QTL 分析。我们的研究结果揭示了退化雄蕊的多基因基础,其中两轮退化雄蕊在一定程度上受独立控制。我们还发现,A. jonesii 的退化雄蕊缺失并不是完全的,在其内部可育雄蕊中有时会出现类似退化雄蕊的性状,这可能代表了基因表达的消退边界。本研究发现的 QTLs 为今后反向遗传和功能研究提供了指导图谱,有助于研究该性状的遗传基础和进化意义。
Loss of staminodes in Aquilegia jonesii reveals a fading stamen–staminode boundary
The modification of fertile stamens into sterile staminodes has occurred independently many times in the flowering plant lineage. In the genus Aquilegia (columbine) and its closest relatives, the two stamen whorls closest to the carpels have been converted to staminodes. In Aquilegia, the only genetic analyses of staminode development have been reverse genetic approaches revealing that B-class floral identity genes are involved. A. jonesii, the only species of columbine where staminodes have reverted to fertile stamens, allows us to explore the genetic architecture of staminode development using a forward genetic approach. We performed QTL analysis using an outcrossed F2 population between A. jonesii and a horticultural variety that makes fully developed staminodes, A. coerulea ‘Origami’. Our results reveal a polygenic basis for staminode loss where the two staminode whorls are under some level of independent control. We also discovered that staminode loss in A. jonesii is not complete, in which staminode-like traits sometimes occur in the inner fertile stamens, potentially representing a fading boundary of gene expression. The QTLs identified in this study provide a map to guide future reverse genetic and functional studies examining the genetic basis and evolutionary significance of this trait.
期刊介绍:
EvoDevo publishes articles on a broad range of topics associated with the translation of genotype to phenotype in a phylogenetic context. Understanding the history of life, the evolution of novelty and the generation of form, whether through embryogenesis, budding, or regeneration are amongst the greatest challenges in biology. We support the understanding of these processes through the many complementary approaches that characterize the field of evo-devo.
The focus of the journal is on research that promotes understanding of the pattern and process of morphological evolution.
All articles that fulfill this aim will be welcome, in particular: evolution of pattern; formation comparative gene function/expression; life history evolution; homology and character evolution; comparative genomics; phylogenetics and palaeontology