Pythia:用于高维环境中状态预测的边缘优先代理

IF 1.7 4区 计算机科学 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE IEEE Embedded Systems Letters Pub Date : 2024-03-20 DOI:10.1109/LES.2024.3403090
Andreas Karatzas;Iraklis Anagnostopoulos
{"title":"Pythia:用于高维环境中状态预测的边缘优先代理","authors":"Andreas Karatzas;Iraklis Anagnostopoulos","doi":"10.1109/LES.2024.3403090","DOIUrl":null,"url":null,"abstract":"Modern deep learning agents usually operate in low-dimensional environments. They process pixel input, do not offer insights into their thought process, and require significant power and computational resources. These characteristics make them inapplicable for embedded devices. In this letter, we present Pythia, an edge-first framework that uses latent imagination to handle complex environments efficiently and envision future agent states. It utilizes a vector quantized variational autoencoder to reduce the high-dimensional features into a low-dimensional space, making it ideal for modern embedded devices. Moreover, Pythia offers human interpretable feedback and scales well with respect to the design space. Pythia surpassed the other state-of-the-art models in prediction accuracy on both intrinsic and extrinsic metrics.","PeriodicalId":56143,"journal":{"name":"IEEE Embedded Systems Letters","volume":"16 4","pages":"473-476"},"PeriodicalIF":1.7000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pythia: An Edge-First Agent for State Prediction in High-Dimensional Environments\",\"authors\":\"Andreas Karatzas;Iraklis Anagnostopoulos\",\"doi\":\"10.1109/LES.2024.3403090\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modern deep learning agents usually operate in low-dimensional environments. They process pixel input, do not offer insights into their thought process, and require significant power and computational resources. These characteristics make them inapplicable for embedded devices. In this letter, we present Pythia, an edge-first framework that uses latent imagination to handle complex environments efficiently and envision future agent states. It utilizes a vector quantized variational autoencoder to reduce the high-dimensional features into a low-dimensional space, making it ideal for modern embedded devices. Moreover, Pythia offers human interpretable feedback and scales well with respect to the design space. Pythia surpassed the other state-of-the-art models in prediction accuracy on both intrinsic and extrinsic metrics.\",\"PeriodicalId\":56143,\"journal\":{\"name\":\"IEEE Embedded Systems Letters\",\"volume\":\"16 4\",\"pages\":\"473-476\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Embedded Systems Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10535437/\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Embedded Systems Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10535437/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

现代深度学习智能体通常在低维环境中运行。它们处理像素输入,不提供对其思维过程的洞察,并且需要大量的功率和计算资源。这些特性使得它们不适用于嵌入式设备。在这封信中,我们介绍了Pythia,一个边缘优先的框架,它使用潜在的想象力来有效地处理复杂的环境,并设想未来的代理状态。它利用矢量量化变分自编码器将高维特征减少到低维空间,使其成为现代嵌入式设备的理想选择。此外,Pythia提供了人类可解释的反馈,并且在设计空间方面具有良好的扩展性。皮媞亚在内在和外在指标上的预测准确性超过了其他最先进的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Pythia: An Edge-First Agent for State Prediction in High-Dimensional Environments
Modern deep learning agents usually operate in low-dimensional environments. They process pixel input, do not offer insights into their thought process, and require significant power and computational resources. These characteristics make them inapplicable for embedded devices. In this letter, we present Pythia, an edge-first framework that uses latent imagination to handle complex environments efficiently and envision future agent states. It utilizes a vector quantized variational autoencoder to reduce the high-dimensional features into a low-dimensional space, making it ideal for modern embedded devices. Moreover, Pythia offers human interpretable feedback and scales well with respect to the design space. Pythia surpassed the other state-of-the-art models in prediction accuracy on both intrinsic and extrinsic metrics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Embedded Systems Letters
IEEE Embedded Systems Letters Engineering-Control and Systems Engineering
CiteScore
3.30
自引率
0.00%
发文量
65
期刊介绍: The IEEE Embedded Systems Letters (ESL), provides a forum for rapid dissemination of latest technical advances in embedded systems and related areas in embedded software. The emphasis is on models, methods, and tools that ensure secure, correct, efficient and robust design of embedded systems and their applications.
期刊最新文献
Table of Contents Editorial IEEE Embedded Systems Letters Publication Information ViTSen: Bridging Vision Transformers and Edge Computing With Advanced In/Near-Sensor Processing Methodology for Formal Verification of Hardware Safety Strategies Using SMT
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1