Yusuke Yamada, Kuniaki Suzuki, Hana Yanagishita, Ko Noguchi
{"title":"拟南芥低温光照叶片线粒体替代氧化酶在光合电子传递中的作用","authors":"Yusuke Yamada, Kuniaki Suzuki, Hana Yanagishita, Ko Noguchi","doi":"10.1007/s12038-024-00446-7","DOIUrl":null,"url":null,"abstract":"<p>ATP-uncoupling alternative oxidase (AOX) in the plant respiratory chain is often induced under stress conditions such as low temperature (LT). The importance of AOX in photosynthesis has been examined, and leaves having larger amounts of AOX tended to show larger decrease in photosynthetic electron transport rate (ETR) by AOX inhibition. However, the details were not clarified. Here, we used three ecotypes of <i>Arabidopsis thaliana</i> which differed in AOX amounts and their responses to LT, and examined whether AOX amount was related to the degree of decrease in ETR by AOX inhibition. In Tiv-0, which originates from a warmer site, grown at high temperature (HT), AOX inhibition decreased ETR, but not in the other ecotypes. LT treatment significantly increased ETR and AOX, especially in Bur-0, but AOX inhibition did not decrease ETR in LT plants of any ecotype. AOX inhibition significantly increased the non-regulated energy dissipation in photosystem II (PSII), Y(NO), and decreased the maximal quantum yield of PSII, <i>F</i><sub>v</sub>/<i>F</i><sub>m</sub>, especially in LT plants. Since AOX inhibition did not affect the parameters of PSI, AOX inhibition may directly affect the reaction center of PSII in LT plants.</p>","PeriodicalId":15171,"journal":{"name":"Journal of Biosciences","volume":"308 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Roles of mitochondrial alternative oxidase in photosynthetic electron transport in illuminated leaves of Arabidopsis thaliana at low temperature\",\"authors\":\"Yusuke Yamada, Kuniaki Suzuki, Hana Yanagishita, Ko Noguchi\",\"doi\":\"10.1007/s12038-024-00446-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>ATP-uncoupling alternative oxidase (AOX) in the plant respiratory chain is often induced under stress conditions such as low temperature (LT). The importance of AOX in photosynthesis has been examined, and leaves having larger amounts of AOX tended to show larger decrease in photosynthetic electron transport rate (ETR) by AOX inhibition. However, the details were not clarified. Here, we used three ecotypes of <i>Arabidopsis thaliana</i> which differed in AOX amounts and their responses to LT, and examined whether AOX amount was related to the degree of decrease in ETR by AOX inhibition. In Tiv-0, which originates from a warmer site, grown at high temperature (HT), AOX inhibition decreased ETR, but not in the other ecotypes. LT treatment significantly increased ETR and AOX, especially in Bur-0, but AOX inhibition did not decrease ETR in LT plants of any ecotype. AOX inhibition significantly increased the non-regulated energy dissipation in photosystem II (PSII), Y(NO), and decreased the maximal quantum yield of PSII, <i>F</i><sub>v</sub>/<i>F</i><sub>m</sub>, especially in LT plants. Since AOX inhibition did not affect the parameters of PSI, AOX inhibition may directly affect the reaction center of PSII in LT plants.</p>\",\"PeriodicalId\":15171,\"journal\":{\"name\":\"Journal of Biosciences\",\"volume\":\"308 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biosciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s12038-024-00446-7\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biosciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12038-024-00446-7","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
Roles of mitochondrial alternative oxidase in photosynthetic electron transport in illuminated leaves of Arabidopsis thaliana at low temperature
ATP-uncoupling alternative oxidase (AOX) in the plant respiratory chain is often induced under stress conditions such as low temperature (LT). The importance of AOX in photosynthesis has been examined, and leaves having larger amounts of AOX tended to show larger decrease in photosynthetic electron transport rate (ETR) by AOX inhibition. However, the details were not clarified. Here, we used three ecotypes of Arabidopsis thaliana which differed in AOX amounts and their responses to LT, and examined whether AOX amount was related to the degree of decrease in ETR by AOX inhibition. In Tiv-0, which originates from a warmer site, grown at high temperature (HT), AOX inhibition decreased ETR, but not in the other ecotypes. LT treatment significantly increased ETR and AOX, especially in Bur-0, but AOX inhibition did not decrease ETR in LT plants of any ecotype. AOX inhibition significantly increased the non-regulated energy dissipation in photosystem II (PSII), Y(NO), and decreased the maximal quantum yield of PSII, Fv/Fm, especially in LT plants. Since AOX inhibition did not affect the parameters of PSI, AOX inhibition may directly affect the reaction center of PSII in LT plants.
期刊介绍:
The Journal of Biosciences is a quarterly journal published by the Indian Academy of Sciences, Bangalore. It covers all areas of Biology and is the premier journal in the country within its scope. It is indexed in Current Contents and other standard Biological and Medical databases. The Journal of Biosciences began in 1934 as the Proceedings of the Indian Academy of Sciences (Section B). This continued until 1978 when it was split into three parts : Proceedings-Animal Sciences, Proceedings-Plant Sciences and Proceedings-Experimental Biology. Proceedings-Experimental Biology was renamed Journal of Biosciences in 1979; and in 1991, Proceedings-Animal Sciences and Proceedings-Plant Sciences merged with it.