天然纤维增强生物质复合材料机械性能的杂化效应研究

IF 2.3 3区 材料科学 Q3 MATERIALS SCIENCE, COMPOSITES Journal of Composite Materials Pub Date : 2024-05-25 DOI:10.1177/00219983241255751
Nihel Ketata, Mohsen Ejday, Yves Grohens, Bastien Seantier, Noamen Guermazi
{"title":"天然纤维增强生物质复合材料机械性能的杂化效应研究","authors":"Nihel Ketata, Mohsen Ejday, Yves Grohens, Bastien Seantier, Noamen Guermazi","doi":"10.1177/00219983241255751","DOIUrl":null,"url":null,"abstract":"Hybridizing the natural fibers with stronger synthetic fibers could significantly improve the properties of the natural fiber-reinforced composites. The improved mechanical capabilities of fiber reinforced polymers result from the fiber’s capacity for withstanding a more substantial portion of the mechanical load compared to the matrix it replaces. In order to guarantee the efficient transfer of the mechanical load from the matrix to the reinforcement, it is necessary to incorporate a fibrous filler. Transference takes place when the length of the fiber is longer than a specific critical length. Fibers which are shorter than the critical length will pull out from the matrix when tested to a tensile load. In some cases, complete transfer of the load is not performed. The goal of this study is to learn more about flax (FF), glass (GF), and mixtures of flax and glass (FF + GF) short fiber-reinforced PLA-PBS composites. This is performed to find out how the flax/glass combination affects the mechanical properties of PLA-PBS-reinforced short fiber composites. In order to extend their use for industrial applications, these composites were manufactured via extrusion and, afterward, injection molding. Fiber aspect ratios were followed after compounding and injection processing. The analysis of fiber lengths reveals a noteworthy observation: the proportion of fibers exceeding their critical length of 531 µm and 772 µm for FF and GF, respectively, is more significant when flax fibers (FF) and glass fibers (GF) are combined compared to when they reinforce the composite individually. Specifically, the composite containing both FF and GF exhibits a higher percentage of fibers surpassing their critical length, compared to their individual reinforcement in the composite. The results reveal that 27% of individually extracted single FF exceed their critical length, whereas a higher proportion, at 34%, is observed when FF is part of the composite mixture. In contrast, the critical length is surpassed by only 4% of individually extracted single GF, whereas the combined presence of GF in the composite results in a notably higher percentage, at 19%. The tensile properties of these composites were investigated considering the effect of the hybridization by flax/glass short fibers. It was noted that the tensile properties of the hybrid composites increase comparing to the flax composites from 42.4 MPa to 53 MPa for the tensile strength and from 4.9 GPa to 5.4 GPa for the tensile modulus. In contrast, the elongation at break of the hybrid composites decreases from 1.7% to 1.5% with the incorporation of glass fibers. The experimental results were compared with the predictions of the mixture law and the Cox-Krenchel model. The findings indicate that mixing synthetic fibers with natural fibers is an excellent approach to enhancing mechanical properties.","PeriodicalId":15489,"journal":{"name":"Journal of Composite Materials","volume":"66 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of the hybridization effect on mechanical properties of natural fiber reinforced biosourced composites\",\"authors\":\"Nihel Ketata, Mohsen Ejday, Yves Grohens, Bastien Seantier, Noamen Guermazi\",\"doi\":\"10.1177/00219983241255751\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hybridizing the natural fibers with stronger synthetic fibers could significantly improve the properties of the natural fiber-reinforced composites. The improved mechanical capabilities of fiber reinforced polymers result from the fiber’s capacity for withstanding a more substantial portion of the mechanical load compared to the matrix it replaces. In order to guarantee the efficient transfer of the mechanical load from the matrix to the reinforcement, it is necessary to incorporate a fibrous filler. Transference takes place when the length of the fiber is longer than a specific critical length. Fibers which are shorter than the critical length will pull out from the matrix when tested to a tensile load. In some cases, complete transfer of the load is not performed. The goal of this study is to learn more about flax (FF), glass (GF), and mixtures of flax and glass (FF + GF) short fiber-reinforced PLA-PBS composites. This is performed to find out how the flax/glass combination affects the mechanical properties of PLA-PBS-reinforced short fiber composites. In order to extend their use for industrial applications, these composites were manufactured via extrusion and, afterward, injection molding. Fiber aspect ratios were followed after compounding and injection processing. The analysis of fiber lengths reveals a noteworthy observation: the proportion of fibers exceeding their critical length of 531 µm and 772 µm for FF and GF, respectively, is more significant when flax fibers (FF) and glass fibers (GF) are combined compared to when they reinforce the composite individually. Specifically, the composite containing both FF and GF exhibits a higher percentage of fibers surpassing their critical length, compared to their individual reinforcement in the composite. The results reveal that 27% of individually extracted single FF exceed their critical length, whereas a higher proportion, at 34%, is observed when FF is part of the composite mixture. In contrast, the critical length is surpassed by only 4% of individually extracted single GF, whereas the combined presence of GF in the composite results in a notably higher percentage, at 19%. The tensile properties of these composites were investigated considering the effect of the hybridization by flax/glass short fibers. It was noted that the tensile properties of the hybrid composites increase comparing to the flax composites from 42.4 MPa to 53 MPa for the tensile strength and from 4.9 GPa to 5.4 GPa for the tensile modulus. In contrast, the elongation at break of the hybrid composites decreases from 1.7% to 1.5% with the incorporation of glass fibers. The experimental results were compared with the predictions of the mixture law and the Cox-Krenchel model. The findings indicate that mixing synthetic fibers with natural fibers is an excellent approach to enhancing mechanical properties.\",\"PeriodicalId\":15489,\"journal\":{\"name\":\"Journal of Composite Materials\",\"volume\":\"66 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Composite Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1177/00219983241255751\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Composite Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/00219983241255751","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

摘要

将天然纤维与强度更高的合成纤维混合使用,可以显著改善天然纤维增强复合材料的性能。纤维增强聚合物的机械性能之所以得到改善,是因为纤维与被其取代的基体相比,能够承受更多的机械载荷。为了保证机械载荷从基体到增强材料的有效传递,有必要加入纤维填料。当纤维长度超过特定的临界长度时,就会发生转移。短于临界长度的纤维在承受拉伸荷载时会从基体中拉出。在某些情况下,载荷不会完全转移。本研究的目的是进一步了解亚麻(FF)、玻璃(GF)以及亚麻和玻璃混合物(FF + GF)短纤维增强聚乳酸-PBS 复合材料。其目的是了解亚麻/玻璃组合如何影响聚乳酸-PBS 增强短纤维复合材料的机械性能。为了扩大其在工业领域的应用,这些复合材料是通过挤压和注塑成型制造的。在复合和注塑加工之后,对纤维长径比进行了跟踪。对纤维长度的分析发现了一个值得注意的现象:当亚麻纤维(FF)和玻璃纤维(GF)组合在一起时,超过临界长度(FF 为 531 微米,GF 为 772 微米)的纤维比例比单独增强复合材料时更大。具体来说,与复合材料中单独增强的纤维相比,同时含有亚麻纤维和玻璃纤维的复合材料中超过临界长度的纤维比例更高。结果显示,单独提取的单根 FF 超过临界长度的比例为 27%,而当 FF 成为复合材料混合物的一部分时,超过临界长度的比例更高,达到 34%。相比之下,单独提取的单一 GF 只有 4% 超过临界长度,而复合材料中 GF 的组合比例明显更高,达到 19%。考虑到亚麻/玻璃短纤维杂化的影响,对这些复合材料的拉伸性能进行了研究。结果表明,与亚麻复合材料相比,混合复合材料的拉伸性能有所提高,拉伸强度从 42.4 兆帕提高到 53 兆帕,拉伸模量从 4.9 千兆帕提高到 5.4 千兆帕。相反,加入玻璃纤维后,混合复合材料的断裂伸长率从 1.7% 下降到 1.5%。实验结果与混合定律和 Cox-Krenchel 模型的预测结果进行了比较。研究结果表明,将合成纤维与天然纤维混合是提高机械性能的极佳方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Investigation of the hybridization effect on mechanical properties of natural fiber reinforced biosourced composites
Hybridizing the natural fibers with stronger synthetic fibers could significantly improve the properties of the natural fiber-reinforced composites. The improved mechanical capabilities of fiber reinforced polymers result from the fiber’s capacity for withstanding a more substantial portion of the mechanical load compared to the matrix it replaces. In order to guarantee the efficient transfer of the mechanical load from the matrix to the reinforcement, it is necessary to incorporate a fibrous filler. Transference takes place when the length of the fiber is longer than a specific critical length. Fibers which are shorter than the critical length will pull out from the matrix when tested to a tensile load. In some cases, complete transfer of the load is not performed. The goal of this study is to learn more about flax (FF), glass (GF), and mixtures of flax and glass (FF + GF) short fiber-reinforced PLA-PBS composites. This is performed to find out how the flax/glass combination affects the mechanical properties of PLA-PBS-reinforced short fiber composites. In order to extend their use for industrial applications, these composites were manufactured via extrusion and, afterward, injection molding. Fiber aspect ratios were followed after compounding and injection processing. The analysis of fiber lengths reveals a noteworthy observation: the proportion of fibers exceeding their critical length of 531 µm and 772 µm for FF and GF, respectively, is more significant when flax fibers (FF) and glass fibers (GF) are combined compared to when they reinforce the composite individually. Specifically, the composite containing both FF and GF exhibits a higher percentage of fibers surpassing their critical length, compared to their individual reinforcement in the composite. The results reveal that 27% of individually extracted single FF exceed their critical length, whereas a higher proportion, at 34%, is observed when FF is part of the composite mixture. In contrast, the critical length is surpassed by only 4% of individually extracted single GF, whereas the combined presence of GF in the composite results in a notably higher percentage, at 19%. The tensile properties of these composites were investigated considering the effect of the hybridization by flax/glass short fibers. It was noted that the tensile properties of the hybrid composites increase comparing to the flax composites from 42.4 MPa to 53 MPa for the tensile strength and from 4.9 GPa to 5.4 GPa for the tensile modulus. In contrast, the elongation at break of the hybrid composites decreases from 1.7% to 1.5% with the incorporation of glass fibers. The experimental results were compared with the predictions of the mixture law and the Cox-Krenchel model. The findings indicate that mixing synthetic fibers with natural fibers is an excellent approach to enhancing mechanical properties.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Composite Materials
Journal of Composite Materials 工程技术-材料科学:复合
CiteScore
5.40
自引率
6.90%
发文量
274
审稿时长
6.8 months
期刊介绍: Consistently ranked in the top 10 of the Thomson Scientific JCR, the Journal of Composite Materials publishes peer reviewed, original research papers from internationally renowned composite materials specialists from industry, universities and research organizations, featuring new advances in materials, processing, design, analysis, testing, performance and applications. This journal is a member of the Committee on Publication Ethics (COPE).
期刊最新文献
Micromechanics-based multi-scale framework with strain-rate effects for the simulation of ballistic impact on composite laminates Recycling catfish bone for additive manufacturing of silicone composite structures Mechanical performances of unsatured polyester composite reinforced by OleaEuropea var. Sylvestris fibers: Characterization, modeling and optimization of fiber textural properties Elastic properties identification of a bio-based material in tertiary packaging: Tools and methods development Parametric process optimisation of automated fibre placement (AFP) based AS4/APC-2 composites for mode I and mode II fracture toughness
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1