利用神经网络进行光束对准

IF 3.6 1区 物理与天体物理 Q1 NUCLEAR SCIENCE & TECHNOLOGY Nuclear Science and Techniques Pub Date : 2024-05-24 DOI:10.1007/s41365-024-01436-y
Guan-Liang Wang, Ke-Min Chen, Si-Wei Wang, Zhe Wang, Tao He, Masahito Hosaka, Guang-Yao Feng, Wei Xu
{"title":"利用神经网络进行光束对准","authors":"Guan-Liang Wang, Ke-Min Chen, Si-Wei Wang, Zhe Wang, Tao He, Masahito Hosaka, Guang-Yao Feng, Wei Xu","doi":"10.1007/s41365-024-01436-y","DOIUrl":null,"url":null,"abstract":"<p>Beams typically do not travel through the magnet centers because of errors in storage rings. The beam deviating from the quadrupole centers is affected by additional dipole fields due to magnetic field feed-down. Beam-based alignment (BBA) is often performed to determine a golden orbit where the beam circulates around the quadrupole center axes. For storage rings with many quadrupoles, the conventional BBA procedure is time-consuming, particularly in the commissioning phase, because of the necessary iterative process. In addition, the conventional BBA method can be affected by strong coupling and the nonlinearity of the storage ring optics. In this study, a novel method based on a neural network was proposed to determine the golden orbit in a much shorter time with reasonable accuracy. This golden orbit can be used directly for operation or adopted as a starting point for conventional BBA. The method was demonstrated in the HLS-II storage ring for the first time through simulations and online experiments. The results of the experiments showed that the golden orbit obtained using this new method was consistent with that obtained using the conventional BBA. The development of this new method and the corresponding experiments are reported in this paper.</p>","PeriodicalId":19177,"journal":{"name":"Nuclear Science and Techniques","volume":"96 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Beam based alignment using a neural network\",\"authors\":\"Guan-Liang Wang, Ke-Min Chen, Si-Wei Wang, Zhe Wang, Tao He, Masahito Hosaka, Guang-Yao Feng, Wei Xu\",\"doi\":\"10.1007/s41365-024-01436-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Beams typically do not travel through the magnet centers because of errors in storage rings. The beam deviating from the quadrupole centers is affected by additional dipole fields due to magnetic field feed-down. Beam-based alignment (BBA) is often performed to determine a golden orbit where the beam circulates around the quadrupole center axes. For storage rings with many quadrupoles, the conventional BBA procedure is time-consuming, particularly in the commissioning phase, because of the necessary iterative process. In addition, the conventional BBA method can be affected by strong coupling and the nonlinearity of the storage ring optics. In this study, a novel method based on a neural network was proposed to determine the golden orbit in a much shorter time with reasonable accuracy. This golden orbit can be used directly for operation or adopted as a starting point for conventional BBA. The method was demonstrated in the HLS-II storage ring for the first time through simulations and online experiments. The results of the experiments showed that the golden orbit obtained using this new method was consistent with that obtained using the conventional BBA. The development of this new method and the corresponding experiments are reported in this paper.</p>\",\"PeriodicalId\":19177,\"journal\":{\"name\":\"Nuclear Science and Techniques\",\"volume\":\"96 1\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nuclear Science and Techniques\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1007/s41365-024-01436-y\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Science and Techniques","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1007/s41365-024-01436-y","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

由于存储环的误差,光束通常不会穿过磁体中心。偏离四极中心的光束会受到磁场馈下产生的额外偶极子场的影响。基于光束的对准(BBA)通常用于确定光束围绕四极子中心轴循环的黄金轨道。对于具有多个四极子的存储环来说,传统的 BBA 程序非常耗时,尤其是在调试阶段,因为需要进行必要的迭代过程。此外,传统的 BBA 方法还会受到强耦合和存储环光学非线性的影响。本研究提出了一种基于神经网络的新方法,可以在更短的时间内确定黄金轨道,并具有合理的精度。该黄金轨道可直接用于运行,也可作为传统 BBA 的起点。通过模拟和在线实验,该方法首次在 HLS-II 存储环中得到了验证。实验结果表明,使用这种新方法获得的黄金轨道与使用传统 BBA 获得的黄金轨道一致。本文报告了这一新方法的开发和相应的实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Beam based alignment using a neural network

Beams typically do not travel through the magnet centers because of errors in storage rings. The beam deviating from the quadrupole centers is affected by additional dipole fields due to magnetic field feed-down. Beam-based alignment (BBA) is often performed to determine a golden orbit where the beam circulates around the quadrupole center axes. For storage rings with many quadrupoles, the conventional BBA procedure is time-consuming, particularly in the commissioning phase, because of the necessary iterative process. In addition, the conventional BBA method can be affected by strong coupling and the nonlinearity of the storage ring optics. In this study, a novel method based on a neural network was proposed to determine the golden orbit in a much shorter time with reasonable accuracy. This golden orbit can be used directly for operation or adopted as a starting point for conventional BBA. The method was demonstrated in the HLS-II storage ring for the first time through simulations and online experiments. The results of the experiments showed that the golden orbit obtained using this new method was consistent with that obtained using the conventional BBA. The development of this new method and the corresponding experiments are reported in this paper.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nuclear Science and Techniques
Nuclear Science and Techniques 物理-核科学技术
CiteScore
5.10
自引率
39.30%
发文量
141
审稿时长
5 months
期刊介绍: Nuclear Science and Techniques (NST) reports scientific findings, technical advances and important results in the fields of nuclear science and techniques. The aim of this periodical is to stimulate cross-fertilization of knowledge among scientists and engineers working in the fields of nuclear research. Scope covers the following subjects: • Synchrotron radiation applications, beamline technology; • Accelerator, ray technology and applications; • Nuclear chemistry, radiochemistry, radiopharmaceuticals, nuclear medicine; • Nuclear electronics and instrumentation; • Nuclear physics and interdisciplinary research; • Nuclear energy science and engineering.
期刊最新文献
Properties of the phase diagram from the Nambu-Jona-Lasino model with a scalar-vector interaction In-beam gamma rays of CSNS Back-n characterized by black resonance filter Analysis of level structure and monopole effects in Ca isotopes Highly coupled off-resonance lattice design in diffraction-limited light sources Possibility of reaching the predicted center of the “island of stability” via the radioactive beam-induced fusion reactions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1