{"title":"软件动态分析方法概览","authors":"V. V. Kuliamin","doi":"10.1134/s0361768824010079","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>A review of software dynamic analysis methods is presented, mainly focusing on the methods supported by tools targeted on software security verification and applicable to system software. Fuzzing, runtime verification and dynamic symbolic execution techniques are considered in detail. Dynamic taint data analysis methods and tools are excluded since gathering technical details on them is complicated. The review of fuzzing and dynamic symbolic execution is focused mostly on the techniques to solve various problems that arise during operation of the tools rather than the particular tools that amount to a number greater than 100. In addition, the fuzzing counteraction techniques are considered.</p>","PeriodicalId":54555,"journal":{"name":"Programming and Computer Software","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Survey of Software Dynamic Analysis Methods\",\"authors\":\"V. V. Kuliamin\",\"doi\":\"10.1134/s0361768824010079\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>A review of software dynamic analysis methods is presented, mainly focusing on the methods supported by tools targeted on software security verification and applicable to system software. Fuzzing, runtime verification and dynamic symbolic execution techniques are considered in detail. Dynamic taint data analysis methods and tools are excluded since gathering technical details on them is complicated. The review of fuzzing and dynamic symbolic execution is focused mostly on the techniques to solve various problems that arise during operation of the tools rather than the particular tools that amount to a number greater than 100. In addition, the fuzzing counteraction techniques are considered.</p>\",\"PeriodicalId\":54555,\"journal\":{\"name\":\"Programming and Computer Software\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Programming and Computer Software\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1134/s0361768824010079\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Programming and Computer Software","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1134/s0361768824010079","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
A review of software dynamic analysis methods is presented, mainly focusing on the methods supported by tools targeted on software security verification and applicable to system software. Fuzzing, runtime verification and dynamic symbolic execution techniques are considered in detail. Dynamic taint data analysis methods and tools are excluded since gathering technical details on them is complicated. The review of fuzzing and dynamic symbolic execution is focused mostly on the techniques to solve various problems that arise during operation of the tools rather than the particular tools that amount to a number greater than 100. In addition, the fuzzing counteraction techniques are considered.
期刊介绍:
Programming and Computer Software is a peer reviewed journal devoted to problems in all areas of computer science: operating systems, compiler technology, software engineering, artificial intelligence, etc.