M. N. Gevorkyan, A. V. Korol’kova, D. S. Kulyabov, L. A. Sevast’yanov
{"title":"为计算机图形学实现解析投影几何","authors":"M. N. Gevorkyan, A. V. Korol’kova, D. S. Kulyabov, L. A. Sevast’yanov","doi":"10.1134/s0361768824020075","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>In their research, the authors actively exploit different branches of geometry. For geometric constructions, computer algebra approaches and systems are used. Currently, we are interested in computer geometry, more specifically, the implementation of computer graphics. The use of the projective space and homogeneous coordinates has actually become a standard in modern computer graphics. In other words, the problem is reduced to the application of analytic projective geometry. The authors failed to find a computer algebra system that could implement projective geometry in its entirety. Therefore, it was decided to partially implement computer algebra for visualization of algebraic relations. For this purpose, the Asymptote system was employed.</p>","PeriodicalId":54555,"journal":{"name":"Programming and Computer Software","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Implementation of Analytic Projective Geometry for Computer Graphics\",\"authors\":\"M. N. Gevorkyan, A. V. Korol’kova, D. S. Kulyabov, L. A. Sevast’yanov\",\"doi\":\"10.1134/s0361768824020075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>In their research, the authors actively exploit different branches of geometry. For geometric constructions, computer algebra approaches and systems are used. Currently, we are interested in computer geometry, more specifically, the implementation of computer graphics. The use of the projective space and homogeneous coordinates has actually become a standard in modern computer graphics. In other words, the problem is reduced to the application of analytic projective geometry. The authors failed to find a computer algebra system that could implement projective geometry in its entirety. Therefore, it was decided to partially implement computer algebra for visualization of algebraic relations. For this purpose, the Asymptote system was employed.</p>\",\"PeriodicalId\":54555,\"journal\":{\"name\":\"Programming and Computer Software\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Programming and Computer Software\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1134/s0361768824020075\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Programming and Computer Software","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1134/s0361768824020075","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Implementation of Analytic Projective Geometry for Computer Graphics
Abstract
In their research, the authors actively exploit different branches of geometry. For geometric constructions, computer algebra approaches and systems are used. Currently, we are interested in computer geometry, more specifically, the implementation of computer graphics. The use of the projective space and homogeneous coordinates has actually become a standard in modern computer graphics. In other words, the problem is reduced to the application of analytic projective geometry. The authors failed to find a computer algebra system that could implement projective geometry in its entirety. Therefore, it was decided to partially implement computer algebra for visualization of algebraic relations. For this purpose, the Asymptote system was employed.
期刊介绍:
Programming and Computer Software is a peer reviewed journal devoted to problems in all areas of computer science: operating systems, compiler technology, software engineering, artificial intelligence, etc.