{"title":"多发性硬化症患者的跌倒、骨折和虚弱风险:一项旨在确定共同遗传基因的孟德尔随机研究。","authors":"Sohyun Jeong, Ming-Ju Tsai, Changbing Shen, Yi-Hsiang Hsu","doi":"10.1007/s00774-024-01504-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Patients with multiple sclerosis (MS) commonly present musculoskeletal disorders characterized by lower bone mineral density (BMD) and muscle weakness. However, the underlying etiology remains unclear. Our objective is to identify shared pleiotropic genetic effects and estimate the causal relationship between MS and musculoskeletal disorders.</p><p><strong>Materials and methods: </strong>We conducted linkage disequilibrium score regression (LDSR), colocalization, and Mendelian randomization (MR) analyses using summary statistics from recent large-scale genome-wide association studies (GWAS), encompassing MS, falls, fractures, and frailty. Additional MR analyses explored the causal relationship with musculoskeletal risk factors, such as BMD, lean mass, grip strength, and vitamin D.</p><p><strong>Results: </strong>We observed a moderate genetic correlation between MS and falls (RG = 0.10, P-value = 0.01) but not between MS with fracture or frailty in the LDSR analyses. MR revealed MS had no causal association with fracture and frailty but a moderate association with falls (OR: 1.004, FDR q-value = 0.018). We further performed colocalization analyses using nine SNPs that exhibited significant associations with both MS and falls in MR. Two SNPs (rs7731626 on ANKRD55 and rs701006 on OS9 gene) showed higher posterior probability of colocalization (PP.H4 = 0.927), suggesting potential pleiotropic effects between MS and falls. The nine genes are associated with central nervous system development and inflammation signaling pathways.</p><p><strong>Conclusion: </strong>We found potential pleiotropic genetic effects between MS and falls. However, our analysis did not reveal a causal relationship between MS and increased risks of falls, fractures, or frailty. This suggests that the musculoskeletal disorders frequently reported in MS patients in clinical studies are more likely attributed to secondary factors associated with disease progression and treatment, rather than being directly caused by MS itself.</p>","PeriodicalId":15116,"journal":{"name":"Journal of Bone and Mineral Metabolism","volume":" ","pages":"335-343"},"PeriodicalIF":2.4000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11147890/pdf/","citationCount":"0","resultStr":"{\"title\":\"Falls, fracture and frailty risk in multiple sclerosis: a Mendelian Randomization study to identify shared genetics.\",\"authors\":\"Sohyun Jeong, Ming-Ju Tsai, Changbing Shen, Yi-Hsiang Hsu\",\"doi\":\"10.1007/s00774-024-01504-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Patients with multiple sclerosis (MS) commonly present musculoskeletal disorders characterized by lower bone mineral density (BMD) and muscle weakness. However, the underlying etiology remains unclear. Our objective is to identify shared pleiotropic genetic effects and estimate the causal relationship between MS and musculoskeletal disorders.</p><p><strong>Materials and methods: </strong>We conducted linkage disequilibrium score regression (LDSR), colocalization, and Mendelian randomization (MR) analyses using summary statistics from recent large-scale genome-wide association studies (GWAS), encompassing MS, falls, fractures, and frailty. Additional MR analyses explored the causal relationship with musculoskeletal risk factors, such as BMD, lean mass, grip strength, and vitamin D.</p><p><strong>Results: </strong>We observed a moderate genetic correlation between MS and falls (RG = 0.10, P-value = 0.01) but not between MS with fracture or frailty in the LDSR analyses. MR revealed MS had no causal association with fracture and frailty but a moderate association with falls (OR: 1.004, FDR q-value = 0.018). We further performed colocalization analyses using nine SNPs that exhibited significant associations with both MS and falls in MR. Two SNPs (rs7731626 on ANKRD55 and rs701006 on OS9 gene) showed higher posterior probability of colocalization (PP.H4 = 0.927), suggesting potential pleiotropic effects between MS and falls. The nine genes are associated with central nervous system development and inflammation signaling pathways.</p><p><strong>Conclusion: </strong>We found potential pleiotropic genetic effects between MS and falls. However, our analysis did not reveal a causal relationship between MS and increased risks of falls, fractures, or frailty. This suggests that the musculoskeletal disorders frequently reported in MS patients in clinical studies are more likely attributed to secondary factors associated with disease progression and treatment, rather than being directly caused by MS itself.</p>\",\"PeriodicalId\":15116,\"journal\":{\"name\":\"Journal of Bone and Mineral Metabolism\",\"volume\":\" \",\"pages\":\"335-343\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11147890/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Bone and Mineral Metabolism\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00774-024-01504-8\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bone and Mineral Metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00774-024-01504-8","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/27 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
Falls, fracture and frailty risk in multiple sclerosis: a Mendelian Randomization study to identify shared genetics.
Introduction: Patients with multiple sclerosis (MS) commonly present musculoskeletal disorders characterized by lower bone mineral density (BMD) and muscle weakness. However, the underlying etiology remains unclear. Our objective is to identify shared pleiotropic genetic effects and estimate the causal relationship between MS and musculoskeletal disorders.
Materials and methods: We conducted linkage disequilibrium score regression (LDSR), colocalization, and Mendelian randomization (MR) analyses using summary statistics from recent large-scale genome-wide association studies (GWAS), encompassing MS, falls, fractures, and frailty. Additional MR analyses explored the causal relationship with musculoskeletal risk factors, such as BMD, lean mass, grip strength, and vitamin D.
Results: We observed a moderate genetic correlation between MS and falls (RG = 0.10, P-value = 0.01) but not between MS with fracture or frailty in the LDSR analyses. MR revealed MS had no causal association with fracture and frailty but a moderate association with falls (OR: 1.004, FDR q-value = 0.018). We further performed colocalization analyses using nine SNPs that exhibited significant associations with both MS and falls in MR. Two SNPs (rs7731626 on ANKRD55 and rs701006 on OS9 gene) showed higher posterior probability of colocalization (PP.H4 = 0.927), suggesting potential pleiotropic effects between MS and falls. The nine genes are associated with central nervous system development and inflammation signaling pathways.
Conclusion: We found potential pleiotropic genetic effects between MS and falls. However, our analysis did not reveal a causal relationship between MS and increased risks of falls, fractures, or frailty. This suggests that the musculoskeletal disorders frequently reported in MS patients in clinical studies are more likely attributed to secondary factors associated with disease progression and treatment, rather than being directly caused by MS itself.
期刊介绍:
The Journal of Bone and Mineral Metabolism (JBMM) provides an international forum for researchers and clinicians to present and discuss topics relevant to bone, teeth, and mineral metabolism, as well as joint and musculoskeletal disorders. The journal welcomes the submission of manuscripts from any country. Membership in the society is not a prerequisite for submission. Acceptance is based on the originality, significance, and validity of the material presented. The journal is aimed at researchers and clinicians dedicated to improvements in research, development, and patient-care in the fields of bone and mineral metabolism.