Pablo Gallardo, Mariana Izquierdo, Tomeu Viver, Esteban Bustos-Caparros, Dana Piras, Roberto M Vidal, Hermie M J Harmsen, Mauricio J Farfan
{"title":"用元基因组学方法揭示儿童腹泻性大肠埃希氏菌引起的腹泻中粪便肠道微生物群与短链脂肪酸之间的关系。","authors":"Pablo Gallardo, Mariana Izquierdo, Tomeu Viver, Esteban Bustos-Caparros, Dana Piras, Roberto M Vidal, Hermie M J Harmsen, Mauricio J Farfan","doi":"10.15698/mic2024.04.820","DOIUrl":null,"url":null,"abstract":"<p><p>Diarrheagenic <i>Escherichia coli</i> (DEC) is the main cause of diarrhea in children under five years old. The virulence of DEC is tightly regulated by environmental signals influenced by the gut microbiota and its metabolites. Short-chain fatty acids (SCFAs) are the main metabolic product of anaerobic fermentation in the gut, but their role in DEC diarrhea has not yet been established. In this study, we determine the levels of acetate, propionate, and butyrate in stool samples from children with diarrhea caused by DEC, and we identify bacteria from the fecal gut microbiota associated with the production of SCFAs. The microbiota and SCFAs levels in stool samples obtained from 40 children with diarrhea and 43 healthy children were determined by 16S rRNA gene sequencing and HPLC, respectively. Additionally, shotgun metagenomics was used to identify metagenome-assembled genomes (MAGs) in a subgroup of samples. The results showed significantly higher levels of all SCFAs tested in diarrheal samples than in healthy controls. The abundance of <i>Streptococcus</i> sp., <i>Limosilactobacillus</i>, <i>Blautia</i>, <i>Escherichia</i>, <i>Bacteroides</i>, <i>Megamonas,</i> and <i>Roseburia</i> was higher in the DEC group than in healthy individuals. Functional analysis of bacteria and their main metabolic pathways made it possible to identify species MAGs that could be responsible for the detected SCFAs levels in DEC-positive diarrhea. In conclusion, based on our results and published data, we suggest that SCFAs may be important in the crosstalk between the microbiota and DEC pathogens in the gut.</p>","PeriodicalId":18397,"journal":{"name":"Microbial Cell","volume":"11 ","pages":"116-127"},"PeriodicalIF":4.1000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11122282/pdf/","citationCount":"0","resultStr":"{\"title\":\"A metagenomic approach to unveil the association between fecal gut microbiota and short-chain fatty acids in diarrhea caused by diarrheagenic <i>Escherichia coli</i> in children.\",\"authors\":\"Pablo Gallardo, Mariana Izquierdo, Tomeu Viver, Esteban Bustos-Caparros, Dana Piras, Roberto M Vidal, Hermie M J Harmsen, Mauricio J Farfan\",\"doi\":\"10.15698/mic2024.04.820\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Diarrheagenic <i>Escherichia coli</i> (DEC) is the main cause of diarrhea in children under five years old. The virulence of DEC is tightly regulated by environmental signals influenced by the gut microbiota and its metabolites. Short-chain fatty acids (SCFAs) are the main metabolic product of anaerobic fermentation in the gut, but their role in DEC diarrhea has not yet been established. In this study, we determine the levels of acetate, propionate, and butyrate in stool samples from children with diarrhea caused by DEC, and we identify bacteria from the fecal gut microbiota associated with the production of SCFAs. The microbiota and SCFAs levels in stool samples obtained from 40 children with diarrhea and 43 healthy children were determined by 16S rRNA gene sequencing and HPLC, respectively. Additionally, shotgun metagenomics was used to identify metagenome-assembled genomes (MAGs) in a subgroup of samples. The results showed significantly higher levels of all SCFAs tested in diarrheal samples than in healthy controls. The abundance of <i>Streptococcus</i> sp., <i>Limosilactobacillus</i>, <i>Blautia</i>, <i>Escherichia</i>, <i>Bacteroides</i>, <i>Megamonas,</i> and <i>Roseburia</i> was higher in the DEC group than in healthy individuals. Functional analysis of bacteria and their main metabolic pathways made it possible to identify species MAGs that could be responsible for the detected SCFAs levels in DEC-positive diarrhea. In conclusion, based on our results and published data, we suggest that SCFAs may be important in the crosstalk between the microbiota and DEC pathogens in the gut.</p>\",\"PeriodicalId\":18397,\"journal\":{\"name\":\"Microbial Cell\",\"volume\":\"11 \",\"pages\":\"116-127\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11122282/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbial Cell\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.15698/mic2024.04.820\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.15698/mic2024.04.820","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
致腹泻大肠杆菌(DEC)是导致五岁以下儿童腹泻的主要原因。DEC 的致病力受到肠道微生物群及其代谢产物影响的环境信号的严格调控。短链脂肪酸(SCFA)是肠道厌氧发酵的主要代谢产物,但其在 DEC 腹泻中的作用尚未确定。在本研究中,我们测定了由 DEC 引起的腹泻患儿粪便样本中乙酸盐、丙酸盐和丁酸盐的含量,并从粪便肠道微生物群中找出了与 SCFAs 的产生有关的细菌。通过 16S rRNA 基因测序和高效液相色谱法,分别测定了 40 名腹泻患儿和 43 名健康儿童粪便样本中的微生物群和 SCFAs 含量。此外,研究人员还利用霰弹枪元基因组学鉴定了一部分样本中的元基因组组装基因组(MAGs)。结果显示,腹泻样本中所有受测 SCFAs 的含量均明显高于健康对照组。在 DEC 组中,链球菌、Limosilactobacillus、Blautia、Escherichia、Bacteroides、Megamonas 和 Roseburia 的含量高于健康人。通过对细菌及其主要代谢途径进行功能分析,可以确定在 DEC 阳性腹泻中检测到的 SCFAs 水平可能是由 MAGs 物种引起的。总之,根据我们的研究结果和已发表的数据,我们认为 SCFAs 可能在肠道微生物群和 DEC 病原体之间的相互影响中起着重要作用。
A metagenomic approach to unveil the association between fecal gut microbiota and short-chain fatty acids in diarrhea caused by diarrheagenic Escherichia coli in children.
Diarrheagenic Escherichia coli (DEC) is the main cause of diarrhea in children under five years old. The virulence of DEC is tightly regulated by environmental signals influenced by the gut microbiota and its metabolites. Short-chain fatty acids (SCFAs) are the main metabolic product of anaerobic fermentation in the gut, but their role in DEC diarrhea has not yet been established. In this study, we determine the levels of acetate, propionate, and butyrate in stool samples from children with diarrhea caused by DEC, and we identify bacteria from the fecal gut microbiota associated with the production of SCFAs. The microbiota and SCFAs levels in stool samples obtained from 40 children with diarrhea and 43 healthy children were determined by 16S rRNA gene sequencing and HPLC, respectively. Additionally, shotgun metagenomics was used to identify metagenome-assembled genomes (MAGs) in a subgroup of samples. The results showed significantly higher levels of all SCFAs tested in diarrheal samples than in healthy controls. The abundance of Streptococcus sp., Limosilactobacillus, Blautia, Escherichia, Bacteroides, Megamonas, and Roseburia was higher in the DEC group than in healthy individuals. Functional analysis of bacteria and their main metabolic pathways made it possible to identify species MAGs that could be responsible for the detected SCFAs levels in DEC-positive diarrhea. In conclusion, based on our results and published data, we suggest that SCFAs may be important in the crosstalk between the microbiota and DEC pathogens in the gut.