Zhilong Li, Shaojie Wu, Tongzu Liu, Sheng Li, Xinghuan Wang
{"title":"输尿管结石碎石用铥光纤激光器的最佳参数设置:两种不同测试环境下的对比研究。","authors":"Zhilong Li, Shaojie Wu, Tongzu Liu, Sheng Li, Xinghuan Wang","doi":"10.1007/s00240-024-01585-0","DOIUrl":null,"url":null,"abstract":"<p><p>This study aims to identify optimal parameters for using Thulium fiber lasers (TFL) in ureteral stone lithotripsy to ensure laser safety and maximize efficacy. Our goal is to improve the outcomes of single-use semi-rigid ureteroscopy for treating stones located in the proximal ureter. A clinically relevant thermal testing device was designed to investigate heating effects during TFL stone fragmentation. The device was utilized to identify safe power thresholds for TFL at various irrigation rates. Three other devices were used to assess varying pulse energy effects on stone fragmentation efficiency, dusting, retropulsion, and depth of tissue vaporization. Comparative experiments in fresh porcine renal units were performed to validate the efficacy and safety of optimal TFL parameters for semi-rigid ureteroscopy in proximal ureteral stone procedures. Our study found that the improved device generated a higher thermal effect. Furthermore, the safe power threshold for laser lithotripsy increased as the irrigation rate was raised. At an irrigation rate of 40 ml/min, it is safe to use an average power of less than 30 watts. Although increasing pulse energy has a progressively lower effect on fragmentation and dust removal efficiency, it did lead to a linear increase in stone displacement and tissue vaporization depth. Thermal testing showed 20 W (53.87 ± 2.67 °C) indicating potential urothelial damage. In our study of laser lithotripsy for proximal ureteral stones, the group treated with 0.3 J pulses had several advantages compared to the 0.8 J group: Fewer large fragments (> 4 mm): 0 vs. 1.67 fragments (1-2.25), p = 0.002, a lower number of collateral tissue injuries: 0.50 (0-1.25) vs. 2.67 (2-4), p = 0.011, and lower stone retropulsion grading: 0.83 (0.75-1) vs. 1.67 (1-2), p = 0.046. There was no significant difference in operating time between the groups (443.33 ± 78.30 s vs. 463.17 ± 75.15 s, p = 0.664). These findings suggest that TFL irradiation generates a greater thermal effect compared to non-irradiated stones. Furthermore, the thermal effect during laser lithotripsy is influenced by both power and irrigation flow rate. Our study suggests that using a power below 15 W with an irrigation flow rate of 20 ml/min is safe. Moreover, a pulse energy of 0.3 J appears to be optimal for achieving the best overall stone fragmentation effect.</p>","PeriodicalId":23411,"journal":{"name":"Urolithiasis","volume":"52 1","pages":"78"},"PeriodicalIF":2.0000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal parameter settings of thulium fiber laser for ureteral stone lithotripsy: a comparative study in two different testing environments.\",\"authors\":\"Zhilong Li, Shaojie Wu, Tongzu Liu, Sheng Li, Xinghuan Wang\",\"doi\":\"10.1007/s00240-024-01585-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study aims to identify optimal parameters for using Thulium fiber lasers (TFL) in ureteral stone lithotripsy to ensure laser safety and maximize efficacy. Our goal is to improve the outcomes of single-use semi-rigid ureteroscopy for treating stones located in the proximal ureter. A clinically relevant thermal testing device was designed to investigate heating effects during TFL stone fragmentation. The device was utilized to identify safe power thresholds for TFL at various irrigation rates. Three other devices were used to assess varying pulse energy effects on stone fragmentation efficiency, dusting, retropulsion, and depth of tissue vaporization. Comparative experiments in fresh porcine renal units were performed to validate the efficacy and safety of optimal TFL parameters for semi-rigid ureteroscopy in proximal ureteral stone procedures. Our study found that the improved device generated a higher thermal effect. Furthermore, the safe power threshold for laser lithotripsy increased as the irrigation rate was raised. At an irrigation rate of 40 ml/min, it is safe to use an average power of less than 30 watts. Although increasing pulse energy has a progressively lower effect on fragmentation and dust removal efficiency, it did lead to a linear increase in stone displacement and tissue vaporization depth. Thermal testing showed 20 W (53.87 ± 2.67 °C) indicating potential urothelial damage. In our study of laser lithotripsy for proximal ureteral stones, the group treated with 0.3 J pulses had several advantages compared to the 0.8 J group: Fewer large fragments (> 4 mm): 0 vs. 1.67 fragments (1-2.25), p = 0.002, a lower number of collateral tissue injuries: 0.50 (0-1.25) vs. 2.67 (2-4), p = 0.011, and lower stone retropulsion grading: 0.83 (0.75-1) vs. 1.67 (1-2), p = 0.046. There was no significant difference in operating time between the groups (443.33 ± 78.30 s vs. 463.17 ± 75.15 s, p = 0.664). These findings suggest that TFL irradiation generates a greater thermal effect compared to non-irradiated stones. Furthermore, the thermal effect during laser lithotripsy is influenced by both power and irrigation flow rate. Our study suggests that using a power below 15 W with an irrigation flow rate of 20 ml/min is safe. Moreover, a pulse energy of 0.3 J appears to be optimal for achieving the best overall stone fragmentation effect.</p>\",\"PeriodicalId\":23411,\"journal\":{\"name\":\"Urolithiasis\",\"volume\":\"52 1\",\"pages\":\"78\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Urolithiasis\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00240-024-01585-0\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"UROLOGY & NEPHROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Urolithiasis","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00240-024-01585-0","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"UROLOGY & NEPHROLOGY","Score":null,"Total":0}
Optimal parameter settings of thulium fiber laser for ureteral stone lithotripsy: a comparative study in two different testing environments.
This study aims to identify optimal parameters for using Thulium fiber lasers (TFL) in ureteral stone lithotripsy to ensure laser safety and maximize efficacy. Our goal is to improve the outcomes of single-use semi-rigid ureteroscopy for treating stones located in the proximal ureter. A clinically relevant thermal testing device was designed to investigate heating effects during TFL stone fragmentation. The device was utilized to identify safe power thresholds for TFL at various irrigation rates. Three other devices were used to assess varying pulse energy effects on stone fragmentation efficiency, dusting, retropulsion, and depth of tissue vaporization. Comparative experiments in fresh porcine renal units were performed to validate the efficacy and safety of optimal TFL parameters for semi-rigid ureteroscopy in proximal ureteral stone procedures. Our study found that the improved device generated a higher thermal effect. Furthermore, the safe power threshold for laser lithotripsy increased as the irrigation rate was raised. At an irrigation rate of 40 ml/min, it is safe to use an average power of less than 30 watts. Although increasing pulse energy has a progressively lower effect on fragmentation and dust removal efficiency, it did lead to a linear increase in stone displacement and tissue vaporization depth. Thermal testing showed 20 W (53.87 ± 2.67 °C) indicating potential urothelial damage. In our study of laser lithotripsy for proximal ureteral stones, the group treated with 0.3 J pulses had several advantages compared to the 0.8 J group: Fewer large fragments (> 4 mm): 0 vs. 1.67 fragments (1-2.25), p = 0.002, a lower number of collateral tissue injuries: 0.50 (0-1.25) vs. 2.67 (2-4), p = 0.011, and lower stone retropulsion grading: 0.83 (0.75-1) vs. 1.67 (1-2), p = 0.046. There was no significant difference in operating time between the groups (443.33 ± 78.30 s vs. 463.17 ± 75.15 s, p = 0.664). These findings suggest that TFL irradiation generates a greater thermal effect compared to non-irradiated stones. Furthermore, the thermal effect during laser lithotripsy is influenced by both power and irrigation flow rate. Our study suggests that using a power below 15 W with an irrigation flow rate of 20 ml/min is safe. Moreover, a pulse energy of 0.3 J appears to be optimal for achieving the best overall stone fragmentation effect.
期刊介绍:
Official Journal of the International Urolithiasis Society
The journal aims to publish original articles in the fields of clinical and experimental investigation only within the sphere of urolithiasis and its related areas of research. The journal covers all aspects of urolithiasis research including the diagnosis, epidemiology, pathogenesis, genetics, clinical biochemistry, open and non-invasive surgical intervention, nephrological investigation, chemistry and prophylaxis of the disorder. The Editor welcomes contributions on topics of interest to urologists, nephrologists, radiologists, clinical biochemists, epidemiologists, nutritionists, basic scientists and nurses working in that field.
Contributions may be submitted as full-length articles or as rapid communications in the form of Letters to the Editor. Articles should be original and should contain important new findings from carefully conducted studies designed to produce statistically significant data. Please note that we no longer publish articles classified as Case Reports. Editorials and review articles may be published by invitation from the Editorial Board. All submissions are peer-reviewed. Through an electronic system for the submission and review of manuscripts, the Editor and Associate Editors aim to make publication accessible as quickly as possible to a large number of readers throughout the world.