Marcin Kruk, Piotr Lalowski, Monika Hoffmann, Monika Trząskowska, Danuta Jaworska
{"title":"高纤维植物零食中益生菌的存活率和保质期 - 模型研究","authors":"Marcin Kruk, Piotr Lalowski, Monika Hoffmann, Monika Trząskowska, Danuta Jaworska","doi":"10.1007/s11130-024-01196-5","DOIUrl":null,"url":null,"abstract":"<p><p>The study aimed to develop plant-based model snacks that are high in fibre, contain probiotic bacteria and are convenient for long-term storage. The research focused on selecting a suitable form of probiotic bacteria (active biomass, microencapsulated, freeze-dried), inoculation method (in the base mass or in the filling of a snack) and appropriate storage conditions (4°Cor 20 °C). The potential synbiotic properties were evaluated. The microencapsulated bacteria had the highest survival rate at 4 °C, while the freeze-dried bacteria showed better survival rates at 20 °C. Probiotics had a higher survival rate when enclosed inside snacks with a low water activity (a<sub>w</sub> = 0.27) peanut butter filling than in snacks without filling (a<sub>w</sub> = 0.53). Enclosing the probiotics in a low a<sub>w</sub> filling ensures their survival at ambient temperature for 5 months at a count higher than 6 log CFU/g. The snacks exhibited high antioxidant capacity (average 300 mg ascorbic acid equivalent/100 g), polyphenol content (average 357 mg gallic acid equivalent/100 g) and high fibre content (average 10.2 g/100 g). The sensory analysis showed a high overall quality of the snacks (average 7.1/10 of the conventional units). Furthermore, after six months of storage, significant changes were observed in the antioxidant properties, polyphenol content and texture of the snacks, while their sensory quality remained unchanged. Moreover, a potential synbiotic effect was observed. The method used to assess bacterial growth indicated significantly higher values in the model snacks compared to a control sample. Therefore, this study has effectively addressed the gap in knowledge regarding the survival of probiotics in snacks of this nature.</p>","PeriodicalId":20092,"journal":{"name":"Plant Foods for Human Nutrition","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11410916/pdf/","citationCount":"0","resultStr":"{\"title\":\"Probiotic Bacteria Survival and Shelf Life of High Fibre Plant Snack - Model Study.\",\"authors\":\"Marcin Kruk, Piotr Lalowski, Monika Hoffmann, Monika Trząskowska, Danuta Jaworska\",\"doi\":\"10.1007/s11130-024-01196-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The study aimed to develop plant-based model snacks that are high in fibre, contain probiotic bacteria and are convenient for long-term storage. The research focused on selecting a suitable form of probiotic bacteria (active biomass, microencapsulated, freeze-dried), inoculation method (in the base mass or in the filling of a snack) and appropriate storage conditions (4°Cor 20 °C). The potential synbiotic properties were evaluated. The microencapsulated bacteria had the highest survival rate at 4 °C, while the freeze-dried bacteria showed better survival rates at 20 °C. Probiotics had a higher survival rate when enclosed inside snacks with a low water activity (a<sub>w</sub> = 0.27) peanut butter filling than in snacks without filling (a<sub>w</sub> = 0.53). Enclosing the probiotics in a low a<sub>w</sub> filling ensures their survival at ambient temperature for 5 months at a count higher than 6 log CFU/g. The snacks exhibited high antioxidant capacity (average 300 mg ascorbic acid equivalent/100 g), polyphenol content (average 357 mg gallic acid equivalent/100 g) and high fibre content (average 10.2 g/100 g). The sensory analysis showed a high overall quality of the snacks (average 7.1/10 of the conventional units). Furthermore, after six months of storage, significant changes were observed in the antioxidant properties, polyphenol content and texture of the snacks, while their sensory quality remained unchanged. Moreover, a potential synbiotic effect was observed. The method used to assess bacterial growth indicated significantly higher values in the model snacks compared to a control sample. Therefore, this study has effectively addressed the gap in knowledge regarding the survival of probiotics in snacks of this nature.</p>\",\"PeriodicalId\":20092,\"journal\":{\"name\":\"Plant Foods for Human Nutrition\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11410916/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Foods for Human Nutrition\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s11130-024-01196-5\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Foods for Human Nutrition","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11130-024-01196-5","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/27 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Probiotic Bacteria Survival and Shelf Life of High Fibre Plant Snack - Model Study.
The study aimed to develop plant-based model snacks that are high in fibre, contain probiotic bacteria and are convenient for long-term storage. The research focused on selecting a suitable form of probiotic bacteria (active biomass, microencapsulated, freeze-dried), inoculation method (in the base mass or in the filling of a snack) and appropriate storage conditions (4°Cor 20 °C). The potential synbiotic properties were evaluated. The microencapsulated bacteria had the highest survival rate at 4 °C, while the freeze-dried bacteria showed better survival rates at 20 °C. Probiotics had a higher survival rate when enclosed inside snacks with a low water activity (aw = 0.27) peanut butter filling than in snacks without filling (aw = 0.53). Enclosing the probiotics in a low aw filling ensures their survival at ambient temperature for 5 months at a count higher than 6 log CFU/g. The snacks exhibited high antioxidant capacity (average 300 mg ascorbic acid equivalent/100 g), polyphenol content (average 357 mg gallic acid equivalent/100 g) and high fibre content (average 10.2 g/100 g). The sensory analysis showed a high overall quality of the snacks (average 7.1/10 of the conventional units). Furthermore, after six months of storage, significant changes were observed in the antioxidant properties, polyphenol content and texture of the snacks, while their sensory quality remained unchanged. Moreover, a potential synbiotic effect was observed. The method used to assess bacterial growth indicated significantly higher values in the model snacks compared to a control sample. Therefore, this study has effectively addressed the gap in knowledge regarding the survival of probiotics in snacks of this nature.
期刊介绍:
Plant Foods for Human Nutrition (previously Qualitas Plantarum) is an international journal that publishes reports of original research and critical reviews concerned with the improvement and evaluation of the nutritional quality of plant foods for humans, as they are influenced by:
- Biotechnology (all fields, including molecular biology and genetic engineering)
- Food science and technology
- Functional, nutraceutical or pharma foods
- Other nutrients and non-nutrients inherent in plant foods