确定 FRET 辅助蛋白质结构建模的最小距离约束集。

ArXiv Pub Date : 2024-08-19
Zhuoyi Liu, Alex T Grigas, Jacob Sumner, Edward Knab, Caitlin M Davis, Corey S O'Hern
{"title":"确定 FRET 辅助蛋白质结构建模的最小距离约束集。","authors":"Zhuoyi Liu, Alex T Grigas, Jacob Sumner, Edward Knab, Caitlin M Davis, Corey S O'Hern","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Proteins naturally occur in crowded cellular environments and interact with other proteins, nucleic acids, and organelles. Since most previous experimental protein structure determination techniques require that proteins occur in idealized, non-physiological environments, the effects of realistic cellular environments on protein structure are largely unexplored. Recently, Förster resonance energy transfer (FRET) has been shown to be an effective experimental method for investigating protein structure <i>in vivo</i>. Inter-residue distances measured <i>in vivo</i> can be incorporated as restraints in molecular dynamics (MD) simulations to model protein structural dynamics <i>in vivo</i>. Since most FRET studies only obtain inter-residue separations for a small number of amino acid pairs, it is important to determine the minimum number of restraints in the MD simulations that are required to achieve a given root-mean-square deviation (RMSD) from the experimental structural ensemble. Further, what is the optimal method for selecting these inter-residue restraints? Here, we implement several methods for selecting the most important FRET pairs and determine the number of pairs <math> <msub><mrow><mi>N</mi></mrow> <mrow><mi>r</mi></mrow> </msub> </math> that are needed to induce conformational changes in proteins between two experimentally determined structures. We find that enforcing only a small fraction of restraints, <math> <msub><mrow><mi>N</mi></mrow> <mrow><mi>r</mi></mrow> </msub> <mo>/</mo> <mi>N</mi> <mo>≲</mo> <mn>0.08</mn></math> , where <math><mi>N</mi></math> is the number of amino acids, can induce the conformational changes. These results establish the efficacy of FRET-assisted MD simulations for atomic scale structural modeling of proteins <i>in vivo</i>.</p>","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11118665/pdf/","citationCount":"0","resultStr":"{\"title\":\"Identifying the minimal sets of distance restraints for FRET-assisted protein structural modeling.\",\"authors\":\"Zhuoyi Liu, Alex T Grigas, Jacob Sumner, Edward Knab, Caitlin M Davis, Corey S O'Hern\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Proteins naturally occur in crowded cellular environments and interact with other proteins, nucleic acids, and organelles. Since most previous experimental protein structure determination techniques require that proteins occur in idealized, non-physiological environments, the effects of realistic cellular environments on protein structure are largely unexplored. Recently, Förster resonance energy transfer (FRET) has been shown to be an effective experimental method for investigating protein structure <i>in vivo</i>. Inter-residue distances measured <i>in vivo</i> can be incorporated as restraints in molecular dynamics (MD) simulations to model protein structural dynamics <i>in vivo</i>. Since most FRET studies only obtain inter-residue separations for a small number of amino acid pairs, it is important to determine the minimum number of restraints in the MD simulations that are required to achieve a given root-mean-square deviation (RMSD) from the experimental structural ensemble. Further, what is the optimal method for selecting these inter-residue restraints? Here, we implement several methods for selecting the most important FRET pairs and determine the number of pairs <math> <msub><mrow><mi>N</mi></mrow> <mrow><mi>r</mi></mrow> </msub> </math> that are needed to induce conformational changes in proteins between two experimentally determined structures. We find that enforcing only a small fraction of restraints, <math> <msub><mrow><mi>N</mi></mrow> <mrow><mi>r</mi></mrow> </msub> <mo>/</mo> <mi>N</mi> <mo>≲</mo> <mn>0.08</mn></math> , where <math><mi>N</mi></math> is the number of amino acids, can induce the conformational changes. These results establish the efficacy of FRET-assisted MD simulations for atomic scale structural modeling of proteins <i>in vivo</i>.</p>\",\"PeriodicalId\":93888,\"journal\":{\"name\":\"ArXiv\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11118665/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ArXiv\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

蛋白质天然存在于拥挤的细胞环境中,并与其他蛋白质、核酸和细胞器相互作用。由于之前的大多数蛋白质结构测定实验技术都要求蛋白质在理想化的非生理环境中发生,因此现实的细胞环境对蛋白质结构的影响在很大程度上尚未被探索。最近,F/"{o}rster 共振能量转移(FRET)已被证明是研究体内蛋白质结构的有效实验方法。在体内测得的残基间距离可以作为分子动力学(MD)模拟的约束条件,从而建立体内蛋白质结构动态模型。由于大多数 FRET 研究只能获得少量氨基酸对的残基间距离,因此必须确定 MD 模拟中的最小限制因子数量,以实现与实验结构组合的均方根偏差(RMSD)。此外,选择这些残基间限制的最佳方法是什么?在这里,我们采用了几种方法来选择最重要的 FRET 对,并确定在两个实验确定的结构之间诱导蛋白质构象变化所需的对数 $N_{r}$。我们发现,只需执行一小部分限制($N_{r}/N \lesssim 0.08$,其中$N$为氨基酸数目)就能诱导构象变化。这些结果证明了 FRET 辅助 MD 模拟对体内蛋白质原子尺度结构建模的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Identifying the minimal sets of distance restraints for FRET-assisted protein structural modeling.

Proteins naturally occur in crowded cellular environments and interact with other proteins, nucleic acids, and organelles. Since most previous experimental protein structure determination techniques require that proteins occur in idealized, non-physiological environments, the effects of realistic cellular environments on protein structure are largely unexplored. Recently, Förster resonance energy transfer (FRET) has been shown to be an effective experimental method for investigating protein structure in vivo. Inter-residue distances measured in vivo can be incorporated as restraints in molecular dynamics (MD) simulations to model protein structural dynamics in vivo. Since most FRET studies only obtain inter-residue separations for a small number of amino acid pairs, it is important to determine the minimum number of restraints in the MD simulations that are required to achieve a given root-mean-square deviation (RMSD) from the experimental structural ensemble. Further, what is the optimal method for selecting these inter-residue restraints? Here, we implement several methods for selecting the most important FRET pairs and determine the number of pairs N r that are needed to induce conformational changes in proteins between two experimentally determined structures. We find that enforcing only a small fraction of restraints, N r / N 0.08 , where N is the number of amino acids, can induce the conformational changes. These results establish the efficacy of FRET-assisted MD simulations for atomic scale structural modeling of proteins in vivo.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Categorization of 33 computational methods to detect spatially variable genes from spatially resolved transcriptomics data. A Geometric Tension Dynamics Model of Epithelial Convergent Extension. Learning Molecular Representation in a Cell. Ankle Exoskeletons May Hinder Standing Balance in Simple Models of Older and Younger Adults. Nonparametric causal inference for optogenetics: sequential excursion effects for dynamic regimes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1