Craig B Prater, Kevin J Kjoller, Andrew P D Stuart, David A Grigg, Rinuk 'Limurn, Kathleen M Gough
{"title":"利用荧光检测光热红外(FL-PTIR)对自发荧光生物材料和光合微生物进行宽域超分辨率红外光谱分析和成像。","authors":"Craig B Prater, Kevin J Kjoller, Andrew P D Stuart, David A Grigg, Rinuk 'Limurn, Kathleen M Gough","doi":"10.1177/00037028241256978","DOIUrl":null,"url":null,"abstract":"<p><p>We have demonstrated high-speed, super-resolution infrared (IR) spectroscopy and chemical imaging of autofluorescent biomaterials and organisms using camera-based widefield photothermal detection that takes advantage of temperature-dependent modulations of autofluorescent emission. A variety of biological materials and photosynthetic organisms exhibit strong autofluorescence emission under ultraviolet excitation and the autofluorescent emission has a very strong temperature dependence, of order 1%/K. Illuminating a sample with pulses of IR light from a wavelength-tunable laser source causes periodic localized sample temperature increases that result in a corresponding transient decrease in autofluorescent emission. A low-cost light-emitting diode-based fluorescence excitation source was used in combination with a conventional fluorescence microscopy camera to detect localized variations in autofluorescent emission over a wide area as an indicator of localized IR absorption. IR absorption image stacks were acquired over a range of IR wavelengths, including the fingerprint spectral range, enabling extraction of localized IR absorption spectra. We have applied widefield fluorescence detected photothermal IR (FL-PTIR) to an analysis of autofluorescent biological materials including collagen, leaf tissue, and photosynthetic organisms including diatoms and green microalgae cells. We have also demonstrated the FL-PTIR on live microalgae in water, demonstrating the potential for label-free dynamic chemical imaging of autofluorescent cells.</p>","PeriodicalId":8253,"journal":{"name":"Applied Spectroscopy","volume":" ","pages":"1208-1219"},"PeriodicalIF":2.2000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11563884/pdf/","citationCount":"0","resultStr":"{\"title\":\"Widefield Super-Resolution Infrared Spectroscopy and Imaging of Autofluorescent Biological Materials and Photosynthetic Microorganisms Using Fluorescence Detected Photothermal Infrared (FL-PTIR).\",\"authors\":\"Craig B Prater, Kevin J Kjoller, Andrew P D Stuart, David A Grigg, Rinuk 'Limurn, Kathleen M Gough\",\"doi\":\"10.1177/00037028241256978\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We have demonstrated high-speed, super-resolution infrared (IR) spectroscopy and chemical imaging of autofluorescent biomaterials and organisms using camera-based widefield photothermal detection that takes advantage of temperature-dependent modulations of autofluorescent emission. A variety of biological materials and photosynthetic organisms exhibit strong autofluorescence emission under ultraviolet excitation and the autofluorescent emission has a very strong temperature dependence, of order 1%/K. Illuminating a sample with pulses of IR light from a wavelength-tunable laser source causes periodic localized sample temperature increases that result in a corresponding transient decrease in autofluorescent emission. A low-cost light-emitting diode-based fluorescence excitation source was used in combination with a conventional fluorescence microscopy camera to detect localized variations in autofluorescent emission over a wide area as an indicator of localized IR absorption. IR absorption image stacks were acquired over a range of IR wavelengths, including the fingerprint spectral range, enabling extraction of localized IR absorption spectra. We have applied widefield fluorescence detected photothermal IR (FL-PTIR) to an analysis of autofluorescent biological materials including collagen, leaf tissue, and photosynthetic organisms including diatoms and green microalgae cells. We have also demonstrated the FL-PTIR on live microalgae in water, demonstrating the potential for label-free dynamic chemical imaging of autofluorescent cells.</p>\",\"PeriodicalId\":8253,\"journal\":{\"name\":\"Applied Spectroscopy\",\"volume\":\" \",\"pages\":\"1208-1219\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11563884/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Spectroscopy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/00037028241256978\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Spectroscopy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/00037028241256978","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/27 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
Widefield Super-Resolution Infrared Spectroscopy and Imaging of Autofluorescent Biological Materials and Photosynthetic Microorganisms Using Fluorescence Detected Photothermal Infrared (FL-PTIR).
We have demonstrated high-speed, super-resolution infrared (IR) spectroscopy and chemical imaging of autofluorescent biomaterials and organisms using camera-based widefield photothermal detection that takes advantage of temperature-dependent modulations of autofluorescent emission. A variety of biological materials and photosynthetic organisms exhibit strong autofluorescence emission under ultraviolet excitation and the autofluorescent emission has a very strong temperature dependence, of order 1%/K. Illuminating a sample with pulses of IR light from a wavelength-tunable laser source causes periodic localized sample temperature increases that result in a corresponding transient decrease in autofluorescent emission. A low-cost light-emitting diode-based fluorescence excitation source was used in combination with a conventional fluorescence microscopy camera to detect localized variations in autofluorescent emission over a wide area as an indicator of localized IR absorption. IR absorption image stacks were acquired over a range of IR wavelengths, including the fingerprint spectral range, enabling extraction of localized IR absorption spectra. We have applied widefield fluorescence detected photothermal IR (FL-PTIR) to an analysis of autofluorescent biological materials including collagen, leaf tissue, and photosynthetic organisms including diatoms and green microalgae cells. We have also demonstrated the FL-PTIR on live microalgae in water, demonstrating the potential for label-free dynamic chemical imaging of autofluorescent cells.
期刊介绍:
Applied Spectroscopy is one of the world''s leading spectroscopy journals, publishing high-quality peer-reviewed articles, both fundamental and applied, covering all aspects of spectroscopy. Established in 1951, the journal is owned by the Society for Applied Spectroscopy and is published monthly. The journal is dedicated to fulfilling the mission of the Society to “…advance and disseminate knowledge and information concerning the art and science of spectroscopy and other allied sciences.”